S3-Leitlinie
Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome

Version 3.0 - Juli 2022
AWMF-Registernummer: 032/053OL
Wesentliche Neuerungen

Wesentliche Neuerungen in der Leitlinie zur Diagnostik und Therapie des Hepatozellulären Karzinoms

Folgende wesentliche Änderungen ergeben sich beim Hepatozellulären Karzinom zur S3-Leitlinie von 2021:

- **Kapitel 3.1 (Risikofaktoren für ein HCC):** Neu aufgenommen wurden die akute intermittierende Porphyrie, Glykogenspeichererkrankungen, Morbus Gaucher und Tyrosinämie Typ I als Risikofaktoren für die Entwicklung eines Hepatozellulären Karzinoms.

- **Kapitel 3.5 (Systemtherapie):** In der letzten Leitlinie wurde als Erstlinientherapie die Kombinationstherapie aus Atezolizumab und Bevacizumab empfohlen. Darüberhinaus wurden weitere zugelassene Therapieoptionen (Sorafenib, Lenvatinib, Regorafenib, Cabozantinib, Ramucirumab) empfohlen. Es wurde nun eine Empfehlung modifiziert, sodass nun Patienten, denen keine zugelassenen Therapieoptionen mehr zur Verfügung steht und bisher keine Immuntherapie erhalten haben, eine Immuntherapie empfohlen wird.

Folgende wesentliche Änderungen ergeben sich bei den biliären Karzinomen zur S3-Leitlinie von 2021:

Eine detaillierte Übersicht der Änderungen befindet sich Kapitel 6.2
Inhalt

Wesentliche Neuerungen

1 Informationen zu dieser Leitlinie

1.1 Herausgeber

1.2 Federführende Fachgesellschaft(en)

1.3 Finanzierung der Leitlinie

1.4 Kontakt

1.5 Zitierweise

1.6 Besonderer Hinweis

1.7 Ziele des Leitlinienprogramms Onkologie

1.8 Weitere Dokumente zu dieser Leitlinie

1.9 Zusammensetzung der Leitliniengruppe

1.9.1 Koordination

1.9.2 Beteiligte Fachgesellschaften und Organisationen

1.9.3 Weitere Beteiligte (ohne Stimmrecht)

1.9.4 Patientenbeteiligung

1.9.5 Methodische Begleitung

1.10 Abkürzungsverzeichnis

2 Einführung

2.1 Geltungsbereich und Zweck

2.1.1 Zielsetzung und Fragestellung

2.1.2 Adressaten

2.1.3 Gültigkeitsdauer und Aktualisierungsverfahren

2.2 Grundlagen der Methodik

2.2.1 Schema der Evidenzgraduierung

2.2.2 Schema der Empfehlungsgraduierung

2.2.3 Statements

2.2.4 Expertenkonsens (EK)

2.2.5 Unabhängigkeit und Umgang mit Interessenkonflikten

3 Diagnostik und Therapie des Hepatozellulären Karzinoms
4 Diagnostik und Therapie der biliären Karzinome

4.1 Risikofaktoren, Prävention und Früherkennung

4.1.1 Risikofaktoren

4.1.2 Prophylaktische und therapeutische Maßnahmen zur Reduktion des Risikos der Entstehung von biliären Karzinomen

4.1.3 Früherkennung

4.2 Histopathologische und molekulare Diagnostik

4.2.1 Typisierung und Staging von biliären Karzinomen

4.2.2 Zytologische und histopathologische Untersuchungen zur Diagnostik eines CCA, eines Gallenblasenkarzinoms

4.2.3 Molekulare Diagnostik

4.3 Bildgebende und endoskopische Diagnostik

4.3.1 Bildgebende und/oder endoskopische Untersuchungen zum Staging und zur Diagnosestellung eines biliären Karzinoms

4.3.2 Untersuchungsmethoden zur Darstellung der maximalen Ausbreitung des Tumors

4.3.3 Diagnostikalgorithmus

4.3.4 Endoskopische Diagnostik

4.4 Operative und interventionelle Therapieverfahren

4.4.1 Resektion

4.4.2 Lebertransplantation

4.4.3 Interventionelle Therapieverfahren

4.4.4 Endoskopische Therapieverfahren

4.4.5 Stereotaxie

4.4.6 Nachsorge

4.5 Systemtherapie

4.5.1 Adjuvante Therapie

4.5.2 Neoadjuvante Therapie primär resektabler Tumoren

4.5.3 Systemtherapie lokal fortgeschrittener Tumoren

4.5.4 Palliative Systemtherapie

4.5.5 Verlaufskontrollen unter Systemtherapie

5 Qualitätsindikatoren

6 Anhang

6.1 Literaturübersichten

6.1.1 Kapitel 3.4 Operative und interventionelle Therapieverfahren

6.1.2 Kapitel 4.4. Operative und Interventionelle Therapie der biliären Karzinome
6.2 Übersicht der Änderungen zur Version 2 ... 169

7 Abbildungsverzeichnis ... 171

8 Tabellenverzeichnis ... 172

9 Literaturverzeichnis ... 174
1 Informationen zu dieser Leitlinie

1.1 Herausgeber
Leitlinienprogramm Onkologie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinishen Fachgesellschaften e. V. (AWMF), Deutschen Krebsgesellschaft e. V. (DKG) und der Stiftung Deutsche Krebshilfe (DKH).

1.2 Federführende Fachgesellschaft(en)
Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten e.V. (DGVS)

1.3 Finanzierung der Leitlinie
Diese Leitlinie wurde von der Deutschen Krebshilfe im Rahmen des Leitlinienprogramms Onkologie gefördert.

1.4 Kontakt
Office Leitlinienprogramm Onkologie
c/o Deutsche Krebsgesellschaft e. V.
Kuno-Fischer-Straße 8
14057 Berlin
leitlinienprogramm@krebsgesellschaft.de
www.leitlinienprogramm-onkologie.de

1.5 Zitierweise
1.6 **Besonderer Hinweis**

Der Benutzer selbst bleibt verantwortlich für jede diagnostische und therapeutische Applikation, Medikation und Dosierung.

In dieser Leitlinie wird aus Gründen der Lesbarkeit die männliche Form verwendet, nichtsdestoweniger beziehen sich die Angaben auf Angehörige aller Geschlechter.

1.7 **Ziele des Leitlinienprogramms Onkologie**

1.8 Weitere Dokumente zu dieser Leitlinie

Bei diesem Dokument handelt es sich um die Langversion der S3-Leitlinie „Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome“. Neben der Langversion wird es folgende ergänzende Dokumente zu dieser Leitlinie geben:

- Kurzversion der Leitlinie
- Laienversionen (Patientenleitlinie)
- Leitlinienreport zum Aktualisierungsprozess der Leitlinie
- Evidenzberichte zu Literaturrecherchen und Evidenztabellen

Diese Leitlinie und alle Zusatzdokumente sind über die folgenden Seiten zugänglich.

- Leitlinienprogramm Onkologie (https://www.leitlinienprogramm-onkologie.de/leitlinien/hepatozellulaires-karzinom-hcc/)
- AWMF (www.leitlinien.net)
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (www.dgvs.de)
- Guidelines International Network (www.g-i-n.net)

Dokumente zu den Vorgängerversionen der Leitlinie sind im Leitlinienarchiv unter:

Die Leitlinie ist außerdem in der App des Leitlinienprogramms Onkologie enthalten.

Weitere Informationen unter: https://www.leitlinienprogramm-onkologie.de/app
1.9 Zusammensetzung der Leitliniengruppe

1.9.1 Koordination

Prof. Dr. Nisar P. Malek
Ärztlicher Direktor Medizinische Klinik Universitätsklinikum Tübingen

Prof. Dr. Michael Bitzer
Stellvertreter Ärztlicher Direktor Medizinische Klinik Universitätsklinikum Tübingen

Prof. Dr. Peter R. Galle
Ärztlicher Direktor Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Sabrina Voesch
Ärztin in Weiterbildung Medizinische Klinik Universitätsklinikum Tübingen

1.9.2 Beteiligte Fachgesellschaften und Organisationen

<table>
<thead>
<tr>
<th>Beteiligte Fachgesellschaften und Organisationen (alphabetisch)</th>
<th>Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsgemeinschaft Bildgebung in der Onkologie der DKG (ABO)</td>
<td>PD Dr. Thorsten Persigehl</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Internistische Onkologie in der DKG (AIO)</td>
<td>Prof. Dr. Arndt Vogel, Prof. Dr. Henning Wege</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Onkologische Rehabilitation und Sozialmedizin (AGORS)</td>
<td>PD Dr. Reiner Caspari</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Palliativmedizin in der DKG (APM)</td>
<td>Ulrike Ritterbusch</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Prävention und integrative Medizin in der Onkologie der Deutschen Krebsgesellschaft (PRiO)</td>
<td>Prof. Dr. Christoph Stoll</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Psychoonkologie der Deutschen Krebsgesellschaft (PSO)</td>
<td>Prof. Dr. Andreas Stengel</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Radiologische Onkologie (ARO)</td>
<td>Prof. Dr. Thomas Brunner, PD Dr. Eleni Gkika (1)</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Supportive Maßnahmen in der Onkologie (AGSMO)</td>
<td>Dr. Jörn Rüssel</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Tumorklassifikation in der Onkologie der DKG (ATO)</td>
<td>Prof. Dr. Andrea Tannapfel</td>
</tr>
<tr>
<td>Berufsverband Deutscher Pathologen e.V.</td>
<td>Prof. Dr. Peter Schirmacher, Prof. Dr. Matthias Evert</td>
</tr>
<tr>
<td>Chirurgische Arbeitsgemeinschaft Onkologie - Viszeralchirurgie (CAO-V)</td>
<td>Prof. Dr. Hans Jürgen Schlitt</td>
</tr>
</tbody>
</table>
Beteiligte Fachgesellschaften und Organisationen (alphabetisch)

| Deutsche Gesellschaft für Allgemein- u. Viszeralchirurgie (DGAV) | Prof. Dr. Daniel Seehofer
	Prof. Dr. Karl-Jürgen Oldhafer
Deutsche Gesellschaft für Chirurgie e.V. (DGC)	Prof. Dr. Hauke Lang
Deutsche Gesellschaft für Endoskopie und bildgebende Verfahren (DGE-BV)	Prof. Dr. Jörg Albert
Deutsche Gesellschaft für Ernährungsmedizin (DGEM)	Prof. Dr. Mathias Plauth (2)
	Prof. Dr. Johann Ockenga
Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten e.V. (DGVS)	Prof. Dr. Nisar P. Malek
	Prof. Dr. Peter Galle
	Prof. Dr. Andreas Geier
	Prof. Dr. Martin Götz
	Prof. Dr. Ruben Plentz
	Prof. Dr. Arndt Vogel
	Prof. Dr. Tom Lüdde
Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. (DGHO)	Prof. Dr. Marianne Sinn
Deutsche Gesellschaft für Humangenetik (GfH)	Prof. Dr. Huu Phuc Nguyen
Deutsche Gesellschaft für Innere Medizin e.V. (DGIM)	Prof. Dr. Jörg Trojan
	Prof. Dr. Michael Bitzer
Deutsche Gesellschaft für Interventionelle Radiologie und minimal-invasive Therapie (DeGIR)	Prof. Dr. Philippe L. Pereira
	Prof. Dr. Andreas Mahnken (1)
Deutsche Gesellschaft für Nuklearmedizin e.V. (DGN)	Prof. Dr. Christian la Fougère
Deutsche Gesellschaft für Palliativmedizin e.V. (DGP)	Prof. Dr. Philipp Lenz
Deutsche Gesellschaft für Pathologie e.V. (DGP)	Prof. Dr. Peter Schirmacher
	Prof. Dr. Matthias Evert
Deutsche Gesellschaft für Pflegewissenschaft e.V. (DGP)	Heinrich Recken B. A.
Deutsche Gesellschaft für Radioonkologie e.V. (DEGRO)	Dr. David Krug
	PD Dr. Judit Boda-Heggemann (1)
Deutsche Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM)	Dr. Andreas Schuler
	PD Dr. Barbara Schellhaas (1)
Deutsche Krebsgesellschaft – AG Onkologische Pathologie	Prof. Dr. Frank Dombrowski
Deutsche Leberhilfe e. V.	Ingo van Thiel
	Achim Kautz (1)
Beteiligte Fachgesellschaften und Organisationen (alphabetisch)

<table>
<thead>
<tr>
<th>Beteiligte Fachgesellschaften und Organisationen (alphabetisch)</th>
<th>Personen</th>
</tr>
</thead>
</table>
| Deutsche Leberstiftung | Ingo van Thiel
Achim Kautz |
| Deutsche Röntgengesellschaft e.V. (DRG) | Prof. Dr. Thomas Helmberger
Prof. Dr. Thomas J. Vogl
Prof. Dr. Philipp Paprottka
Prof. Dr. Frank Wacker
Prof. Dr. Peter Huppert (1) |
| Deutsche Transplantationsgesellschaft (DTG) | Prof. Dr. Silvio Nadalin |
| Deutsche Vereinigung für Soziale Arbeit im Gesundheitswesen e.V. (DVSG) | Anne Taubert |
| Deutscher Verband für Physiotherapie (ZVK) e.V. | Reina Tholen |
| Eingeladene Fachexperten (ohne Stimmrecht) | Prof. Dr. Daniel Wildner
Prof. Dr. Jürgen Pohl
Prof. Dr. Peter Reimer
Prof. Dr. Ralf-Thorsten Hoffmann
Prof. Dr. Marcus-Alexander Wörns
Prof. Dr. Oliver Waidmann
Christine Sandu
Prof. Dr. Enrico De Toni |
| Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH) | Prof. Dr. Irene Schmid |
| Lebertransplantierte Deutschland e.V. | Jutta Riemer |

1: Stellv.
*: Mandatsträger hat an diesem Update nicht mitgewirkt
Tabelle 2: Arbeitsgruppen und deren Mitglieder

<table>
<thead>
<tr>
<th>Arbeitsgruppe</th>
<th>Mitglieder der Arbeitsgruppe</th>
</tr>
</thead>
</table>
| AG I. Risikofaktoren, Prävention und Früherkennung | Leitung: Prof. Dr. Jörg Trojan, Prof. Dr. Andreas Geier
Achim Kautz
Prof. Dr. Elke Roeb
Prof. Dr. Irene Schmid
Dr. Andreas Schuler
Ingo van Thiel
Prof. Dr. Heiner Wedemeyer
Prof. Dr. Daniel Wildner |
| AG II. I. Histopathologische und molekulare Diagnostik | Leitung: Prof. Dr. Peter Schirmacher
Prof. Dr. Frank Dombrowski
Prof. Dr. Matthias Evert
Prof. Dr. Huu Phuc Nguyen
Prof. Dr. Andrea Tannapfel |
| AG II. II Bildgebende Diagnostik | Leitung: Prof. Dr. Martin Götz, Prof. Dr. Philipp Paprottka
PD Dr. Thorsten Persigehl
Prof. Dr. Jürgen Pohl
Prof. Dr. Peter Reimer
PD Dr. Barbara Schellhaas
Dr. Andreas Schuler
Prof. Dr. Thomas J. Vogl
Prof. Dr. Frank Wacker |
| AG III. I. Operative und Interventionelle Therapieverfahren | Leitung: Prof. Dr. Silvio Nadalin, Prof. Dr. Daniel Seehofer, Prof. Dr. Philippe L. Pereira, Prof. Dr. Thomas Helmberger
Prof. Dr. Jörg Albert
Prof. Dr. Thomas Brunner
Prof. Dr. Enrico De Toni
PD Dr. Eleni Gkika
Prof. Dr. Ralf-Thorsten Hoffmann
Prof. Dr. Peter Huppert
Dr. David Krug
Prof. Dr. Christian la Fougère
Prof. Dr. Hauke Lang
Prof. Dr. Andreas Mahnken
Prof. Dr. Karl-Jürgen Oldhafer
Jutta Riemer |
| AG III. II. Systemtherapie | Leitung: Prof. Dr. Michael Bitzer, Prof. Dr. Peter Galle
Prof. Dr. Ruben Plentz
Prof. Dr. Irene Schmid
Prof. Dr. Marianne Sinn
Prof. Dr. Arndt Vogel
Prof. Dr. Henning Wege
Prof. Dr. Marcus-Alexander Wörns |
| AG IV. Supportivtherapie | Leitung: Prof. Dr. Philipp Lenz
PD Dr. Reiner Caspari
Prof. Dr. Johann Ockenga |
1.9 Zusammensetzung der Leitliniengruppe

Arbeitsgruppe

<table>
<thead>
<tr>
<th>Mitglieder der Arbeitsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heinrich Recken B. A.</td>
</tr>
<tr>
<td>Ulrike Ritterbusch</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Stengel</td>
</tr>
<tr>
<td>Dr. Christoph Stoll</td>
</tr>
<tr>
<td>Anne Taubert</td>
</tr>
<tr>
<td>Reina Tholen</td>
</tr>
<tr>
<td>Prof. Dr. Oliver Waidmann</td>
</tr>
</tbody>
</table>

AG V. Qualitätsindikatoren

Leitung: Dr. Markus Follmann MPH, MSc, PD Dr. Simone Wesselmann MBA

- Prof. Dr. Michael Bitzer
- Dr. Susanne Blödt
- Prof. Dr. Nisar P. Malek
- Prof. Dr. Silvio Nadalin
- Prof. Dr. Philippe L. Pereira
- Prof. Dr. Ruben Plentz
- Christine Sandu
- Prof. Dr. Peter Schirmacher
- Dr. Andreas Schuler
- Prof. Dr. Andreas Stengel
- Sabrina Voesch
- Prof. Dr. Thomas J. Vogl
- Prof. Dr. Frank Wacker
- Prof. Dr. Henning Wege

1.9.3 Weitere Beteiligte (ohne Stimmrecht)

Beteiligte Experten

<table>
<thead>
<tr>
<th>Beteiligte Experten</th>
<th>Arbeitsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildner, Daniel</td>
<td>AG I. Risikofaktoren, Prävention und Früherkennung</td>
</tr>
<tr>
<td>Pohl, Jürgen</td>
<td>AG II.I. Bildgebende Diagnostik</td>
</tr>
<tr>
<td>Reimer, Peter</td>
<td>AG II.I. Bildgebende Diagnostik</td>
</tr>
<tr>
<td>De Toni, Enrico</td>
<td>AG III.I. Operative und interventionelle Therapieverfahren</td>
</tr>
<tr>
<td>Hoffmann, Ralf-Thorsten</td>
<td>AG III.I. Operative und Interventionelle Therapieverfahren</td>
</tr>
<tr>
<td>Wörns, Marcus-Alexander</td>
<td>AG III.II. Systemtherapie</td>
</tr>
<tr>
<td>Waidmann, Oliver</td>
<td>AG IV. Supportivtherapie</td>
</tr>
<tr>
<td>Sandu, Christine</td>
<td>AG V. Qualitätsindikatoren - ADT-Vertretung</td>
</tr>
</tbody>
</table>
1.9.4 Patientenbeteiligung
Die Leitlinie wurde unter direkter Beteiligung von vier Patientenvertretern erstellt.

1.9.5 Methodische Begleitung
1. Durch das Leitlinienprogramm Onkologie:
 a. Dr. med. Markus Follmann, MPH, MSc (OL Office c/o Deutsche Krebsgesellschaft)
 b. Thomas Langer, Dipl. Soz. Wiss. (OL Office c/o Deutsche Krebsgesellschaft)

2. Durch die Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.:
 a. Dr. rer. medic. Susanne Blödt, MScPH (AWMF-IMWI)

3. Durch die Firma Clinical Guideline Service - User Group:
 a. Dr. Nadine Steubesand
 b. Dr. Paul Freudenberger

4. Durch die Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankungen:
 a. PD Dr. Petra Lynen Jansen
 b. Pia Lorenz, M.Sc.

1.10 Abkürzungsverzeichnis

Tabelle 3: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F-FDG PET-CT</td>
<td>Fluorine-18-Fluoresoxyglucose Positron-Emissionstomographie</td>
</tr>
<tr>
<td>AASLD</td>
<td>American Association for the Study of Liver Diseases</td>
</tr>
<tr>
<td>AFP</td>
<td>α-Fetoprotein</td>
</tr>
<tr>
<td>AG</td>
<td>Arbeitsgruppe</td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>ARID1A</td>
<td>AT-reiches interaktives Domänen-haltiges Protein 1A</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartat-Aminotransferase</td>
</tr>
<tr>
<td>AWMF</td>
<td>Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften</td>
</tr>
<tr>
<td>BAP1</td>
<td>Breast Cancer 1, early-onset-assoziiertes Protein-1</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>BCLC</td>
<td>Barcelona Clinic Liver Cancer</td>
</tr>
<tr>
<td>BD</td>
<td>biliäre Drainage</td>
</tr>
<tr>
<td>BilIN</td>
<td>Biliäre intraepitheliale Neoplasie</td>
</tr>
<tr>
<td>BRAF</td>
<td>B- rapidly accelerated fibrosarcoma</td>
</tr>
<tr>
<td>BSC</td>
<td>Best Supportive Care</td>
</tr>
<tr>
<td>CA19-9</td>
<td>Kohlenhydrat-Antigen 19-9 (Engl.: Carbohydrate-Antigen 19-9)</td>
</tr>
<tr>
<td>CCA</td>
<td>Cholangiokarzinom</td>
</tr>
<tr>
<td>CECT</td>
<td>Kontrastmittelverstärktes CT</td>
</tr>
<tr>
<td>CEUS</td>
<td>Kontrastverstärkte Sonographie</td>
</tr>
<tr>
<td>CI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>CR</td>
<td>Complete response</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>cTACE</td>
<td>konventionelle transarterielle Chemoembolisation</td>
</tr>
<tr>
<td>DAAD</td>
<td>Direct-acting antiviral Drugs</td>
</tr>
<tr>
<td>dCCA</td>
<td>Distales Cholangiokarzinom</td>
</tr>
<tr>
<td>DCP</td>
<td>Diphencyprone</td>
</tr>
<tr>
<td>DEB-TACE</td>
<td>Drug-eluting Bead TACE</td>
</tr>
<tr>
<td>DE-TACE</td>
<td>Drug-eluting TACE</td>
</tr>
<tr>
<td>DFS</td>
<td>krankheitsfreies Überleben (disease-free survival)</td>
</tr>
<tr>
<td>DGVS</td>
<td>Deutsche Gesellschaft für Verdauungs- und Stoffwechselkrankheiten</td>
</tr>
<tr>
<td>DKG</td>
<td>Deutsche Krebsgesellschaft e.V.</td>
</tr>
<tr>
<td>DWI</td>
<td>Diffusion-weightend imaging</td>
</tr>
<tr>
<td>EASL</td>
<td>European Association for the Study of the Liver</td>
</tr>
<tr>
<td>ECOG</td>
<td>Eastern Cooperative Oncology Group</td>
</tr>
<tr>
<td>EORTC QLQ-C30</td>
<td>European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire 30 Items</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>ERBB2</td>
<td>Siehe HER2</td>
</tr>
<tr>
<td>ERC</td>
<td>Endoskopische retrograde Cholangiographie</td>
</tr>
<tr>
<td>ERCP</td>
<td>Endoskopisch retrograde Cholangiopankreatikographie</td>
</tr>
<tr>
<td>ESMO</td>
<td>European Society of Medical Oncology</td>
</tr>
<tr>
<td>FGFR</td>
<td>Fibroblast Growth Factor Receptor</td>
</tr>
<tr>
<td>FIB-4</td>
<td>Fibrosis-4</td>
</tr>
<tr>
<td>GB-CA</td>
<td>Gallenblasenkarzinom</td>
</tr>
<tr>
<td>GF</td>
<td>Gesichtsfeld</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamat.Pyruvat-Transaminase</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamat-Pyruvat-Transaminase</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis-B-Virus</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma (Hepatozelluläres Karzinom)</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis-C-Virus</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard ratio</td>
</tr>
<tr>
<td>iCCA</td>
<td>Intrahepatisches Cholangiokarzinom</td>
</tr>
<tr>
<td>IDH</td>
<td>Isocitrat-Dehydrogenase</td>
</tr>
<tr>
<td>IPNB</td>
<td>intraduktale papilläre Neoplasie der Gallenwege</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention To Treat</td>
</tr>
<tr>
<td>LI-RADS</td>
<td>Liver Imaging /Reporting and Data System</td>
</tr>
<tr>
<td>LRT</td>
<td>Lokoregionäre Therapie</td>
</tr>
<tr>
<td>LT</td>
<td>Lebertransplantation</td>
</tr>
<tr>
<td>MCN</td>
<td>muzinösen zystischen Neoplasie</td>
</tr>
<tr>
<td>MPH</td>
<td>Master of Public Health</td>
</tr>
<tr>
<td>MRCP</td>
<td>Magnetresonanzcholangiopankreatikographie</td>
</tr>
<tr>
<td>mRECIST</td>
<td>modifizierte Response Evaluation Criteria in Solid Tumors (Kriterien)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>MSc</td>
<td>Master of Science</td>
</tr>
<tr>
<td>MWA</td>
<td>Mikrowellenablation</td>
</tr>
<tr>
<td>NAFLD</td>
<td>nicht-alkoholische Fettlebererkrankung</td>
</tr>
<tr>
<td>NASH</td>
<td>nicht-alkoholische Steatohepatitis</td>
</tr>
<tr>
<td>NCCN</td>
<td>National Comprehensive Cancer Network</td>
</tr>
<tr>
<td>NW</td>
<td>Nebenwirkungen</td>
</tr>
<tr>
<td>OL</td>
<td>Leitlinienprogramm Onkologie der DKG</td>
</tr>
<tr>
<td>OP</td>
<td>Operation</td>
</tr>
<tr>
<td>OR</td>
<td>Quotenverhältnis (Odds-Ratio)</td>
</tr>
<tr>
<td>OS</td>
<td>Gesamtüberleben (Overall Survival)</td>
</tr>
<tr>
<td>PAGE-B</td>
<td>Platelet Age Gender–HBV</td>
</tr>
<tr>
<td>PAI</td>
<td>Perkutane Alkohol injektion</td>
</tr>
<tr>
<td>PBD</td>
<td>Präoperative biliäre Drainage</td>
</tr>
<tr>
<td>pCCA</td>
<td>Perihiläres Cholangiokarzinom</td>
</tr>
<tr>
<td>PD</td>
<td>Privat Dozent</td>
</tr>
<tr>
<td>PD-L1</td>
<td>Programe Death Ligand 1</td>
</tr>
<tr>
<td>PDT</td>
<td>Photodynamische Therapie</td>
</tr>
<tr>
<td>PEI</td>
<td>perkutane Ethanol injektion</td>
</tr>
<tr>
<td>PES</td>
<td>Postembolisationssyndrom</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissions-Tomographie</td>
</tr>
<tr>
<td>PFS</td>
<td>progressionsfreies Überleben (progression-free survival)</td>
</tr>
<tr>
<td>PIVKA</td>
<td>protein induced by vitamin K absence or antagonist</td>
</tr>
<tr>
<td>PR</td>
<td>Partial remission, partielle Remission</td>
</tr>
<tr>
<td>PS</td>
<td>Performance Status</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>PSC</td>
<td>Primär sklerosierende Cholangitis</td>
</tr>
<tr>
<td>PTCD</td>
<td>perkutane transhepatische Cholangiodrainage</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvenylalkohol-Partikel</td>
</tr>
<tr>
<td>R0</td>
<td>Resektion im Gesunden</td>
</tr>
<tr>
<td>R1</td>
<td>mikroskopischer Residualtumor (nach R-Klassifikation)</td>
</tr>
<tr>
<td>RCT</td>
<td>Radiotherapie/ Radiochemotherapie</td>
</tr>
<tr>
<td>RECIST</td>
<td>Response Evaluation Criteria in Solid Tumors</td>
</tr>
<tr>
<td>RFA</td>
<td>Radiofrequenzablation</td>
</tr>
<tr>
<td>SBRT</td>
<td>stereotaktische Bestrahlung</td>
</tr>
<tr>
<td>SD</td>
<td>stable disease</td>
</tr>
<tr>
<td>SEMS</td>
<td>Selbstexpandierende Metallgitterstents</td>
</tr>
<tr>
<td>STIKO</td>
<td>ständige Impfkommission des Robert-Koch-Institut</td>
</tr>
<tr>
<td>SVR</td>
<td>Substained Virological Response</td>
</tr>
<tr>
<td>TACE</td>
<td>trans-arterial Chemoembolisation</td>
</tr>
<tr>
<td>TAE</td>
<td>Transarterielle Embolisation</td>
</tr>
<tr>
<td>TARE</td>
<td>Transarterielle Radioembolisation</td>
</tr>
<tr>
<td>TTP</td>
<td>Time To Progression</td>
</tr>
<tr>
<td>UCSF</td>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td>US</td>
<td>Ultraschall</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization (Welt-Gesundheitsorganisation)</td>
</tr>
</tbody>
</table>
2 Einführung

2.1 Geltungsbereich und Zweck

2.1.1 Zielsetzung und Fragestellung

2.1.2 Adressaten
Die Leitlinie richtet sich an Internisten, Gastroenterologen und Hepatologen, Onkologen, Radiologen, Chirurgen, Palliativmediziner, Pathologen, Nuklearmediziner und Strahlentherapeuten, Psychoonkologen, onkologisch tätige Pflegekräfte und Physiotherapeuten sowie alle an einem HCC oder biliären Karzinom erkrankten Patienten und deren Angehörige. Sie soll außerdem Allgemeinmedizinern und übergeordnete Organisationen (z.B. Krankenkassen) des Gesundheitswesens zur Information dienen.

Sie soll entsprechend der Definition einer Leitlinie Entscheidungshilfen geben, jedoch keine Richtlinie sein. Der behandelnde Arzt ist weiterhin verpflichtet, unter Würdigung der Gesamtsituation des Patienten und mit diesem gemeinsam, die für die individuelle Situation angemessene Vorgehensweise zu finden.

2.1.3 Gültigkeitsdauer und Aktualisierungsverfahren
Die S3-Leitlinie ist bis zur nächsten Aktualisierung maximal aber 5 Jahre gültig. Es sind jährliche Updates der Leitlinie vorgesehen. Bei dringendem Änderungsbedarf zwischen den jährlichen Updates werden diese im Rahmen von Amendments durchgeführt. Kommentare und Hinweise für den Aktualisierungsprozess sind ausdrücklich erwünscht und können an die folgende Adresse gesendet werden:

hcc-und-biliaere-karzinome@leitlinienprogramm-onkologie.de
2.2 Grundlagen der Methodik

2.2.1 Schema der Evidenzgraduierung

<table>
<thead>
<tr>
<th>Frage</th>
<th>Level 1*</th>
<th>Level 2*</th>
<th>Level 3*</th>
<th>Level 4*</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie verbreitet ist das Problem?</td>
<td>Lokale und aktuelle Zufallsstichprobe oder Zählung (Vollerhebung)</td>
<td>Systematische Übersichtsarbeit von Erhebungen, die auf die lokalen Umstände übertragen werden können**</td>
<td>Lokale Erhebung, die nicht auf einer Zufallsstichprobe basiert**</td>
<td>Fallserie**</td>
<td>Nicht anwendbar</td>
</tr>
<tr>
<td>Ist dieser diagnostische oder kontrollierende Test genau? (Diagnose)</td>
<td>Systematische Übersichtsarbeit von Querschnitt-studien mit durchgehend angewandtem Referenzstandard und Verblindung</td>
<td>Einzelne Querschnittsstudie mit durchgehend angewandtem Referenzstandard und Verblindung</td>
<td>Nicht konsekutive*** Studie oder Studie ohne angewandten Referenzstandard**</td>
<td>Fall-Kontroll-Studie oder Studie mit ungeeignetem oder nicht unabhängigen Referenzstandard**</td>
<td>Expertenmeinung basierend auf pathophysiologischen Überlegungen</td>
</tr>
<tr>
<td>Was würde passieren, wenn wir keine Therapie anwenden würden? (Prognose)</td>
<td>Systematische Übersichtsarbeit von Kohorten-studien, die Patienten im Anfangsstadium der Erkrankung beobachten (Inception cohort study)</td>
<td>Einzelne Kohortenstudie von Patienten im Anfangsstadium der Erkrankung (Inception cohort study)</td>
<td>Kohortenstudie oder Kontrollarm einer randomisierten Studie*</td>
<td>Fallserie oder Fall-Kontroll-Studie oder eine prognostische Kohortenstudie mit niedriger methodischer Qualität**</td>
<td>Nicht anwendbar</td>
</tr>
</tbody>
</table>
2.2 Grundlagen der Methodik

<table>
<thead>
<tr>
<th>Frage</th>
<th>Level 1*</th>
<th>Level 2*</th>
<th>Level 3*</th>
<th>Level 4*</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilft dieses Vorgehen? (Nutzen der Intervention)</td>
<td>Systematische Übersichtsarbeit von randomisierten Studien oder N-1-Studien²</td>
<td>Randomisierte Studie oder Beobachtungsstudie mit dramatischen Effekten</td>
<td>Kontrollierte Kohortenstudie/Follow-up-Studie***</td>
<td>Fallserien oder Fall-Kontroll-Studien oder Studien mit historischen Kontrollen**</td>
<td>Expertenmeinung basierend auf pathophysiologischen Überlegungen</td>
</tr>
<tr>
<td>Was sind häufige Nebenwirkungen? (Schaden der Intervention)</td>
<td>Systematische Übersichtsarbeit von entweder randomisierten Studien oder eingebetteten Fall-Kontroll-Studien¹ oder N-1-Studie mit zur Fragestellung passenden Patienten oder beobachtende Studie mit dramatischen Effekten</td>
<td>Randomisierte Studie oder (ausnahmsweise) Beobachtungsstudie mit dramatischen Effekten</td>
<td>Kontrollierte Kohortenstudie/Follow-up-Studie (Post-Marketing-Überwachung), mit ausreichender Fallzahl, um eine häufige Nebenwirkung zu identifizieren. Sollen Langzeitnebenwirkungen erfasst werden, muss das Follow-up ausreichend sein**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was sind seltene Nebenwirkungen? (Schaden der Intervention)</td>
<td>Systematischer Überblick über randomisierten Studien oder N-1-Studien</td>
<td>Randomisierte Studie oder (ausnahmsweise) Beobachtungsstudie mit dramatischen Effekten</td>
<td>Kontrollierte Kohortenstudie/Follow-up-Studie (Post-Marketing-Überwachung), mit ausreichender Fallzahl, um eine häufige Nebenwirkung zu identifizieren. Sollen Langzeitnebenwirkungen erfasst werden, muss das Follow-up ausreichend sein**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ist dieser Früherkennungs-Test sinnvoll? (Screening)</td>
<td>Systematische Übersichtsarbeit von randomisierten Studien</td>
<td>Randomisierte Studie</td>
<td>Kontrollierte Kohortenstudie/Follow-up-Studie**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Level kann ggf. wegen der Studienqualität, wegen ausgedehnter Konfidenzintervalle (unpräzise Effektschätzer), Inkonsistenzen zwischen Studien, oder weil der absolute Effektwert sehr klein ist, sowie wegen mangelnder Übertragbarkeit (Fragenstellung der Studie entspricht nicht der klinischen relevanten Frage) abgewertet werden. Eine Aufwertung des Evidenzlevels ist möglich bei großen oder sehr großen Effekten.

** Grundsätzlich gilt: Ein systematischer Überblick ist immer besser als eine Einzelstudie.

*** Konsekutiver Einschluss Patienten werden fortlaufend rekrutiert.

2 Einzelpatientenstudien, bei denen die Patienten abwechselnd Intervention und Kontrollintervention erhalten.

3 Nachbeobachtungsstudie einer Population aus einem abgeschlossenen RCT.

4 Studie, bei der aus einer laufenden Kohortenstudie Fälle und Kontrollen gezogen werden.

Übersetzung des englischen Originaltextes von Dr. M. Nothacker, MPH (AWMF); Dr. M. Follmann, MPH, MSc (OL) und Dipl.-Soz.Wiss. T. Langer (OL)
2.2 Grundlagen der Methodik

2.2.2 Schema der Empfehlungsgraduierung

Die Methodik des Leitlinienprogramms Onkologie sieht eine Vergabe von Empfehlungsgraden durch die Leitlinienautoren im Rahmen eines formalen Konsensusverfahrens vor. Dementsprechend wurde ein durch die AWMF und DKG moderierter, nominaler Gruppenprozess bzw. strukturierte Konsensuskonferenz durchgeführt. Im Rahmen dieser Prozesse wurden die Empfehlungen von den stimmberechtigten Mandatsträgern (siehe Kapitel 1.9.2) formal abgestimmt. Die Ergebnisse der jeweiligen Abstimmungen (Konsensstärke) sind entsprechend den Kategorien in Tabelle 5 den Empfehlungen zugeordnet.

In der Leitlinie werden zu allen evidenzbasierten Statements (siehe Kapitel 2.2.3) und Empfehlungen das Evidenzlevel der zugrunde liegenden Studien sowie bei Empfehlungen zusätzlich die Stärke der Empfehlung (Empfehlungsgrad) ausgewiesen. Hinsichtlich der Stärke der Empfehlung werden in dieser Leitlinie drei Empfehlungsgrade unterschieden (siehe Tabelle Schema der Empfehlungsgraduierung), die sich auch in der Formulierung der Empfehlungen jeweils widerspiegeln.

Tabelle 5: Schema der Empfehlungsgraduierung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Beschreibung</th>
<th>Ausdrucksweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Starke Empfehlung</td>
<td>soll</td>
</tr>
<tr>
<td>B</td>
<td>Empfehlung</td>
<td>sollte</td>
</tr>
<tr>
<td>O</td>
<td>Empfehlung offen</td>
<td>kann</td>
</tr>
</tbody>
</table>

Tabelle 6: Konsensstärke

<table>
<thead>
<tr>
<th>Konsensstärke</th>
<th>Prozentuale Zustimmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starker Konsens</td>
<td>> 95% der Stimmberechtigten</td>
</tr>
<tr>
<td>Konsens</td>
<td>> 75 – 95% der Stimmberechtigten</td>
</tr>
<tr>
<td>Mehrheitliche Zustimmung</td>
<td>50 – 75% der Stimmberechtigten</td>
</tr>
<tr>
<td>Dissens</td>
<td>< 50% der Stimmberechtigten</td>
</tr>
</tbody>
</table>

Die Entscheidungskriterien für die Festlegung der Empfehlungsgrade werden im Leitlinienreport zu dieser Leitlinie erläutert.

2.2.3 Statements

Als Statements werden Darlegungen oder Erläuterungen von spezifischen Sachverhalten oder Fragestellungen ohne unmittelbare Handlungsaufforderung bezeichnet. Sie werden entsprechend der Vorgehensweise bei den Empfehlungen im Rahmen eines formalen Konsensusverfahrens verabschiedet und können entweder auf Studienergebnissen oder auf Expertenmeinungen beruhen.
2.2.4 **Expertenkonsens (EK)**

2.2.5 **Unabhängigkeit und Umgang mit Interessenkonflikten**

Der Umgang mit Interessenkonflikten wurde analog der Vorgaben der AWMF gemeinsam in unserem Steuergruppentreffen vom 24.06.2021 konsentiert. Zusätzlich wurde dieses Vorgehen mit Vertretern der DKG und der AWMF besprochen. Hier wurde folgendes Vorgehen festgehalten:

- Es wurden alle direkten finanziellen und indirekten sekundären Interessen der letzten drei Jahre im Formular der Interessenkonflikte oder online über das AWMF-Portal „Interessenerklärung online“ angegeben. Unmittelbar vor der Konsensuskonferenz erfolgt eine Aktualisierung der Erklärung.
- Entscheidend für die Bewertung war der thematische Bezug zur Leitlinie.
- Die Interessenskonflikte sind im Leitlinienreport im Kapitel 12.1 aufgeführt.

Umgang mit direkten finanziellen Interessenkonflikten:

- Es kam bei finanziellen Vergütungen durch Ad-Board, Beratertätigkeit und Industriedrittmittel in verantwortlicher Position unabhängig von der Höhe der monetären Zuwendung zur Feststellung eines moderaten Interessenkonfliktes.
- Vortragstätigkeit wurden als geringer Interessenkonflikt bewertet.
- Wurde ein moderater Interessenkonflikt festgestellt, enthielt sich der Mandatsträger bei einzelnen Fragen oder Themenbereichen, je nach festgestelltem Interessenkonflikt.
- Ein Aktienbesitz lag bei keinem Mandatsträger vor. Falls Eigentümerinteressen festgestellt worden wären, hätte dies zu einem Ausschluss der Leitlinienarbeit geführt.

Umgang mit indirekten sekundären Interessenkonflikten:
• Mitgliedschaften in Fachgesellschaften und Beteiligung an Fortbildungen und Ausbildungsinstituten wurden nicht als Interessenkonflikt für diese Leitlinie bewertet, da dies ein essentieller Teil der wissenschaftlichen und klinischen Arbeit ist.
• Ebenso wurde der Schwerpunkt der wissenschaftlichen und klinischen Tätigkeit in diesem Feld erwartet, um eine wissenschaftliche und praktikable Leitlinie zu erstellen.
• Eine persönliche Beziehung (Partner oder Verwandter 1. Grades) zu einem Vertretern von Unternehmens der Gesundheitswirtschaft lag bei keinem Mandatsträger vor.

Als protektive Faktoren gegen eine Verzerrung durch Interessenkonflikte kann die systematische Evidenzaufbereitung, die pluralistische Zusammensetzung der Leitliniengruppe, die neutrale Moderation, die Diskussion der Bewertung der Interessen und des Umgangs mit Interessenkonflikten zu Beginn der Konsenskonferenz sowie die öffentliche Konsultation gewertet werden.
3 Diagnostik und Therapie des Hepatozellulären Karzinoms

3.1 Risikofaktoren, Prävention und Früherkennung

3.1.1 Risikofaktoren und Früherkennung

<table>
<thead>
<tr>
<th>3.1</th>
<th>Evidenzbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence 1</td>
<td>Patienten mit einer Leberzirrhose haben ein erhöhtes Risiko für die Entwicklung eines HCC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leitlinienadaptation: American Association for the Study of Liver Diseases (AASLD)</td>
<td></td>
</tr>
</tbody>
</table>

Eine Leberzirrhose ist jedoch weiterhin der wichtigste Risikofaktor für die Entwicklung eines HCC. Prinzipiell weist jeder Patient mit einer Leberzirrhose unabhängig von der zugrunde liegenden Ätiologie (HCV, HBV, NASH/metabolisches Syndrom, chronischer Alkoholabusus, Hämochromatose, α1-Antitrypsin-Mangel u.a.) ein erhöhtes HCC-Risiko auf. Das relative Risiko unterscheidet sich jedoch je nach Ursache der Erkrankung erheblich. Kohortenstudien haben gezeigt, dass etwa 1-8% aller Patienten mit Zirrhose ein HCC entwickeln (2% bei HBV, 3-8% bei HCV) [5], [7], [8]. Bei einer NAFLD oder NASH variiert hingegen die HCC-Inzidenz sehr stark (0,004 - 7,6%) [9], [2]. Je nach Gesundheitswesen ist ein HCC-Früherkennungsprogramm kosteneffizient ab einer jährlichen HCC Inzidenz von 0,2% bzw. 1,5% [3], [4].
3.1 Risikofaktoren, Prävention und Früherkennung

3.2 Evidenzbasierte Empfehlung

Empfehlungsgrad B

Patienten mit einer chronischen Hepatitis B-Virusinfektion haben ein erhöhtes Risiko für die Entwicklung eines HCC. Diesen Patienten sollte ab einem PAGE-B Score von 10 eine regelmäßige Früherkennung angeboten werden.

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>[10]; [11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2: Primärrecherche</td>
</tr>
</tbody>
</table>

PAGE-B: Platelet Age Gender–HBV

Durch eine antivirale Therapie bei chronischer HBV mit einem Nukleoside/Nukleotide-Analogon wird sowohl das Risiko der Progression der Leberzirrhose inkl. hepatischer Dekompensation als auch das HCC-Risiko reduziert [5]. Diese Patienten weisen jedoch trotz antiviraler Therapie teilweise ein deutlich erhöhtes HCC-Risiko im Vergleich zur Allgemeinbevölkerung auf [12]. Für asiatische Patienten wurden deshalb verschiedene klinische Risikobewertungssysteme wie z.B. Guide with Age, Gender, HBV DNA, Core Promoter Mutations and Cirrhosis-HCC (GAG-HCC), Chinese University-HCC Risikoscore (CU-HCC) oder risk estimate for hepatocellular carcinoma in chronic hepatitis B (REACH-B)-Score, publiziert [13], [14], [15].

Für kaukasische Patienten mit chronischer HBV wurde das PAGE-B-Bewertungssystem etabliert [11]. Hierbei wird aufgrund folgender Punkte ein Score errechnet:

- Geschlecht (weiblich: 0 Punkte; männlich: 6 Punkte) und
- Thrombozytenzahl (≥ 200/nl: 0 Punkte; 100-199/nl: 6 Punkte; < 100/nl: 9 Punkte)

Aus Praktikabilitätsgründen wurde das Vorhandensein einer Leberzirrhose nicht in das Bewertungssystem aufgenommen. Das 5 Jahres-HCC-Risiko lag bei einem PAGE-B Score ≤ 9 bei 0%, bei einem PAGE-B Score 10-17 bei 3% und bei einem PAGE-B Score ≥ 18 bei 17%. Im Vergleich zu GAG-HCC, CU-HCC, REACH-B- und Fibrosis-4(FIB-4)-Score konnte der PAGE-B Score das HCC-Risiko bei kaukasischen Patienten mit chronischer HBV-Infektion besser vorhersagen [10]. Eine große Untersuchung aus China konnte jüngst zeigen, dass der PAGE-B-Score ebenfalls für die HCC-Risikoeinschätzung asiatischer Patienten geeignet ist [16].

3.3 Konsensbasierte Empfehlung

EK

Patienten mit chronischer HCV-Infektion oder nichtalkoholischer Steatohepatitis haben bereits bei einer fortgeschrittenen Leberfibrose ein erhöhtes Risiko für die Entwicklung eines HCC. Diesen Patienten sollte eine regelmäßige Früherkennung angeboten werden.
3.1 Risikofaktoren, Prävention und Früherkennung

3.3 Konsensbasierte Empfehlung geprüft 2022

<table>
<thead>
<tr>
<th>Starker Konsens</th>
</tr>
</thead>
</table>

Bei Patienten ohne Leberzirrhose ist die Risikoanalyse deutlich schwieriger. In der European Association for the Study of the Liver (EASL)-Leitlinie wird das Risiko bei fortgeschrittener Fibrose zwar gewürdigt, aufgrund der damaligen Datenlage resultierte jedoch nur eine schwache Empfehlung eine Früherkennung durchzuführen [5]. In der AASLD-Leitlinie fehlt eine solche Betrachtung bislang [17].

Diabetes und Adipositas sind etablierte Risikofaktoren sowohl für eine NAFLD als auch für die Entwicklung eines HCC. Ursächlich sind eine Insulin-Resistenz und entzündliche Veränderungen der Leber bei NAFLD, was letztlich zu einer NASH führen kann. Patienten mit NASH und Leberzirrhose weisen ein erhöhtes HCC-Risiko auf. Das HCC-Risiko bei NASH ohne Zirrhose ist hingegen variabel. Etliche jüngere Publikationen konnten zeigen, dass bei einem Teil der Patienten mit NASH und HCC keine Zirrhose vorhanden ist [9], [18]. Hierbei handelt es sich jedoch in der Regel um retrospektive Kohortenstudien.

Wir möchten an dieser Stelle auf die S2k-Leitlinie "Nicht alkoholische Fettlebererkrankung" hinweisen, die im April 2022 publiziert wurde.

3.4 Konsensbasierte Empfehlung geprüft 2022

<table>
<thead>
<tr>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten mit einer fortgeschrittenen Leberfibrose, unabhängig von der Ursache der Lebererkrankung, kann die Teilnahme an einer HCC-Früherkennung angeboten werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starker Konsens</th>
</tr>
</thead>
</table>

Anwendung, z.B. AST/Thrombozyten-Ratio (APRI)-Index, NAFLD Fibrose Score, FIB-4 u.a. [20], [22], [23], [24]. Bei den meisten Patienten lässt sich mithilfe nichtinvasiver Verfahren das Vorhandensein einer fortgeschrittenen Fibrose oder einer Leberzirrhose zuverlässig vorhersagen [20], [25].

Allgemeinbevölkerung empfohlen werden. Der Wert für das Screening in Risikindividuen muss prospektiv weiter untersucht werden.

<table>
<thead>
<tr>
<th>3.5</th>
<th>Konsensbasierte Empfehlung</th>
<th>neu 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit akuter intermittierender Porphyrie, Glykogenspeicherkrankheit, Morbus Gaucher und Tyrosinämie Typ I kann eine regelmäßige Früherkennung angeboten werden.</td>
<td>Konsens</td>
</tr>
</tbody>
</table>

Bei selteneren Erkrankungen kann ein erhöhtes Risiko für die Entwicklung eines HCC vorliegen.

Unter anderem ergaben Daten aus dem Schwedischen Porphyrie-Register bei den über 50-Jährigen eine jährliche Inzidenz an primären Lebertumoren von 1,8% (Hazard Ratio 38). Bisher liegen diese Daten nur als Abstract vor, vergleichbare Daten wurde aber bereits 1984 in einer früheren schwedischen Kohorte [36] und kürzlich auch aus Norwegen publiziert [37].

Bei Vorliegen einer Glykogenspeicherkrankheit, insbesondere Typ Ia und Ib, muss mit dem Auftreten von Adenomen und maligner Transformation gerechnet werden [39] [38]. Patienten mit M. Gaucher haben ein deutlich erhöhtes Risiko, auch ohne Zirrhose, ein HCC zu entwickeln [34]. Als Risikofaktoren für die HCC-Entwicklung werden hier ein Zustand nach Splenektomie, die Präsenz einer Fibrose oder Zirrhose, eine persistierende Hyperferritinämie sowie eine begleitende HBV- oder HCV-Infektion angesehen [40].

Tabelle 7: HCC-Risikobewertung bei HCV, HBV, NASH und NAFLD

<table>
<thead>
<tr>
<th>Erkrankungen</th>
<th>HCC-Risiko (jährliche Inzidenz)</th>
<th>Referenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV ohne Zirrhose SVR nach DAAD</td>
<td>Insgesamt Regression der fortgeschrittenen Leberfibrose* Keine fortgeschrittene Leberfibrose</td>
<td>1,3 % 1,6 % 0,4 %</td>
</tr>
<tr>
<td>HCV-Zirrhose SVR nach DAAD</td>
<td>Insgesamt Persistierende fortgeschrittene Leberfibrose* Regression der fortgeschrittenen Leberfibrose*</td>
<td>2,3% 6,5% 1,9 %</td>
</tr>
<tr>
<td>HBV</td>
<td>HBsAg-Trägerstatus** Chronische HBV ohne Zirrhose (unbehandelt) **</td>
<td>0,03-0,07 % 0,12 %</td>
</tr>
<tr>
<td></td>
<td>Chronische HBV mit Zirrhose (unbehandelt) **</td>
<td>2,03 %</td>
</tr>
<tr>
<td></td>
<td>Chronische HBV ohne Zirrhose (behandelt)</td>
<td>0,01-1,4 %</td>
</tr>
<tr>
<td></td>
<td>Chronische HBV mit Zirrhose (behandelt)</td>
<td>0,9-5,4 %</td>
</tr>
<tr>
<td>NASH</td>
<td>NASH mit Zirrhose und mit hohem FIB-4***</td>
<td>1,36 %</td>
</tr>
<tr>
<td></td>
<td>NASH mit Zirrhose und normalem FIB-4</td>
<td>0,48 %</td>
</tr>
<tr>
<td></td>
<td>NASH ohne Zirrhose und mit hohem FIB-4</td>
<td>0,04 %</td>
</tr>
<tr>
<td></td>
<td>NASH ohne Zirrhose und normalem FIB-4</td>
<td>0,004 %</td>
</tr>
<tr>
<td>NAFLD</td>
<td>Ohne Leberfibrose Fortgeschrittene Leberfibrose Zirrhose</td>
<td>0,001 % 0,03 % 0,6 %</td>
</tr>
</tbody>
</table>

*Die Berechnung des FIB-4-Scores erfolgt anhand folgender Formel: Alter (Jahre) × GOT (U/l) / [Thrombozytenzahl (109/l) × √GPT (U/l)]. Das Risiko für eine fortgeschrittene (≥ Metavir F3) Leberfibrose wurde durch einen FIB-4-Score > 3,25 definiert; bei einem FIB-4-Score < 1,45 ist eine fortgeschrittene Leberfibrose unwahrscheinlich; bei einem FIB-4-Score zwischen 1,45-3,25 erfolgt zusätzlich die Bestimmung des APRI-Score (≥ 1,5: hohes Risiko; < 1,: geringes Risiko) zur Risikobewertung.

**Daten für Europa.

*** definiert als ein FIB-4-Score ≥ 2,67

DAAD: Direct-acting antiviral Drugs; GOT: Glutamat-Oxalacetat-Transaminase; GPT: Glutamat-Pyruvat-Transaminase
3.1.2 Prophylaktische und therapeutische Maßnahmen zur Reduktion des HCC-Risikos

3.1.2.1 Primäre Prävention

<table>
<thead>
<tr>
<th>3.6</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
</table>
| EK | Entsprechend den Empfehlungen der Ständigen Impfkommission am Robert Koch-Institut (STIKO) sollen gegen Hepatitis-B-Virus geimpft werden:
- alle Säuglinge ab dem vollendeten 2. Lebensmonat,
- alle Neugeborenen HBsAg-positiver Mütter oder von Müttern mit unbekanntem HBsAg-Status innerhalb von 12 Stunden,
- alle noch nicht geimpften Kinder und Jugendlichen bis zum vollendeten 17. Lebensjahr, möglichst vor Beginn der Pubertät,
- alle in der Indikationsliste der STIKO aufgeführten Personen mit erhöhtem Hepatitis-B-Risiko. |

Starker Konsens

Die intrauterine oder peripartale HBV-Transmission von Mutter auf Fetus ist weltweit wahrscheinlich für die Hälfte aller HBV-Erkrankungsfälle verantwortlich [43]. Das Risiko einer Übertragung von HBsAg-positiven Müttern auf ihre Kinder liegt bei 70-90%. Bei HBsAg-negativen Müttern ist das Risiko niedriger. Durch die Einführung von Vakzinierungsprogrammen wird das vertikale Transmissionsrisiko um 90% reduziert. In Taiwan wurde durch die Einführung von HBV-Vakzinierungsprogrammen ab den 1980er-Jahren die Rate von HBV-Neuinfektionen bei Kindern von 86-96% auf 12-14% (HBsAg-positive Mütter) bzw. von 10-12% auf 3-4% (HBsAg-negative Mütter) gesenkt. Als Folge ist die HCC-Inzidenz, insbesondere bei männlichen Jugendlichen, deutlich rückläufig [44], [45]. In Deutschland wurde die HBV-Vakzinierung 1995 durch die STIKO eingeführt.

3.1.2.2 Sekundäre Prävention

<table>
<thead>
<tr>
<th>3.7</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Ursachen einer chronischen Lebererkrankung sollen, soweit möglich, behandelt werden, um eine Progression einschließlich der Entwicklung eines HCCs zu verhindern.</td>
<td></td>
</tr>
</tbody>
</table>

Starker Konsens

<table>
<thead>
<tr>
<th>3.8</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit chronischer Hepatitis-Virusinfektion sollen gemäß den aktuellen Leitlinien betreut bzw. antiviral behandelt werden, um eine Progression einschließlich der Entwicklung eines HCCs zu verhindern.</td>
<td></td>
</tr>
</tbody>
</table>

Starker Konsens

3.9 Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Patienten mit chronischen Lebererkrankungen sollte der Konsum von Kaffee empfohlen werden.</td>
<td></td>
</tr>
</tbody>
</table>

Level of Evidence 2

Leitlinienadaptation: [46]; [47]; [48]; [49]

Starker Konsens

Kaffeekonsum ist bei Patienten mit chronischen Lebererkrankungen sowohl mit einem verminderten Risiko einer Fibrose-Progression als auch einer HCC-Risiko-Reduktion assoziiert [50]. Der protектив Effekt ist abhängig von der täglichen Kaffeemenge. Die Risikoreduktion für eine Progression der Lebererkrankung bzw. für das Versterben an einer chronischen Lebererkrankung ist sogar noch stärker ausgeprägt als die Reduktion des HCC-Risikos [47], [49]. Obwohl es sich bei den meisten Studien um retrospektive Kohortenstudien handelt und die Angaben zu Tassengröße, Kaffeeart und täglicher Menge nicht standardisiert sind, zeigen alle Metaanalysen einen mengenabhängigen, protektiven Effekt im Vergleich zu keinem Kaffeekonsum auf. Der Effekt erscheint am deutlichsten zu sein bei einem Kaffeekonsum von 3 oder mehr Tassen/Tag [47], [49], [51]. Die HCC-Risikoreduktion bei dieser täglichen Kaffeemenge liegt im Bereich von 41-50%. Der protektive Effekt von entkoffeiniertem Kaffee ist nicht so ausgeprägt wie der von koffeinhaltigem Kaffee [52]. Die Datenlage für einen protektiven Effekt von grünem Tee ist nicht eindeutig [53].

3.10 Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bei Patienten mit chronischer Lebererkrankung und nichtinsulinabhängigem Diabetes mellitus sollte eine Behandlung mit Metformin geprüft werden, um das HCC-Risiko zu senken.</td>
<td></td>
</tr>
</tbody>
</table>

Starker Konsens

Das HCC-Risiko bei Diabetikern, insbesondere bei gleichzeitigem Vorliegen eines metabolischen Syndroms, ist erhöht [8]. Vor dem Hintergrund der steigenden Inzidenz einer NASH und der Diabetes-Zunahme ist die Prävention eines HCC bei dieser Population extrem relevant. Etliche Arbeiten, meist retrospektive Kohortenstudien, haben eine Reduktion der HCC-Inzidenz bei Diabetikern unter Metformin-Therapie gezeigt [55], [56], [57]. Eine Therapie mit Metformin bei Diabetes und chronischer Lebererkrankung weist ein erhöhtes Toxizitätsrisiko einschließlich des Risikos für eine Laktat-Azidose unter Beachtung der Kontraindikationen (z.B. chronisches Nierenversagen mit höhergradig reduzierter glomerulärer Filtrationsrate < 30-60 ml/min/1,73 m²) auf [58], [59].
Eine Leberzirrhose ist kein Grund zur Beendigung einer Therapie mit Metformin. Patienten mit einer Leberzirrhose und Diabetes profitieren von einer Fortführung der Metformin-Therapie. In einer retrospektiven Kohortenstudie wurde eine Verdopplung der Überlebenszeit berichtet (11,8 Jahre vs. 6,0 Jahre bei einem Child-Pugh-Stadium A und 7,7 Jahre vs. 3,5 Jahre bei einem höheren Child-Pugh-Stadium) [54]. In dieser Kohortenstudie wurde bei keinem Patienten (n=172) eine Laktat-Azidose berichtet.

3.1.2.3 Tertiäre Prävention

3.12 Konsensbasierte Empfehlung

EK

Patienten mit chronischer Hepatitis B-Virusinfektion und HCC sollte eine antivirale Therapie angeboten werden.

Konsens

Regelmäßiger Alkoholkonsum stellt einen wichtigen Kofaktor für die Entwicklung eines HCC dar. Patienten mit einer chronischen HCV-Infektion haben bei gleichzeitigem Alkoholkonsum ein deutlich höheres HCC-Risiko. In einer prospektiven Studie an 192 Patienten mit HCV-Zirrhose zeigte sich selbst bei leichtem bis moderatem Alkoholkonsum (median 15 g/Tag) verglichen mit einer Abstinenz eine kumulative 5-Jahres-HCC-Inzidenz von 23,8% vs. 10,6%. Für Patienten mit SVR lag die 5-Jahres-HCC-Inzidenz bei 2,0% verglichen mit 21,7% ohne SVR. Das niedrigste Risiko wiesen Patienten mit SVR und Abstinenz auf (0%), gefolgt von Patienten mit SVR ohne Abstinenz (6,2%). Bei Patienten ohne SVR und Abstinenz lag das Risiko bei 15,9% und bei Patienten ohne SVR, die weiter Alkohol tranken bei 29,2% [60]. Bei Vorliegen einer NASH-Zirrhose und moderatem Alkoholkonsum (≤ 2 alkoholische Getränke/Tag oder 3-6 alkoholische Getränke am Wochenende) steigt das HCC-Risiko ebenfalls erheblich (Faktor 3,6) [61].

Unter Alkoholabstinenz wird bei Vorhandensein einer chronischen Lebererkrankung der Krankheitsverlauf und das Überleben günstig beeinflusst [62].

3.1.2.3 Tertiäre Prävention

3.12 Konsensbasierte Empfehlung

EK

Patienten mit chronischer Hepatitis B-Virusinfektion und HCC sollte eine antivirale Therapie angeboten werden.

Konsens

Patienten mit chronischer HBV und HCC überleben länger mit einer antiviralen Therapie. Bei chirurgisch behandelten Patienten, die eine antivirale Therapie erhielten, zeigte sich nach 1, 3 und 5 Jahren ein deutlich längeres krankheitsfreies Überleben (91,6%, 69,5% und 55% vs. 80,2%, 56% und 44,2%) und auch Gesamtüberleben (99,6%, 93,5% und 87%...
vs. 96,1%, 80,5% und 61,3%) verglichen mit Patienten, die keine antivirale Therapie erhielten \[63\].

Patienten mit chronischer HBV und HCC, die mittels transarterieller Chemoembolisation behandelt werden, überleben ebenfalls länger, wenn vor Therapiebeginn eine antivirale Therapie eingeleitet wird \[64\]. Das 10-Jahresüberleben betrug in einer koreanischen Kohorten-Studie bei Patienten mit prophylaktischer HBV-Therapie 26,5% vs. 12,8% bei Patienten ohne prophylaktische antivirale Therapie. Patienten, die mit Entecavir oder Tenofovir behandelt wurden, überlebten länger als Patienten, die eine weniger effektive, antivirale Therapie erhielten.

Bei Patienten mit fortgeschrittenem HCC und HBV, die eine Therapie mit Sorafenib erhielten, ist eine gleichzeitige antivirale Behandlung ebenfalls mit einem längeren Überleben assoziiert (12,0 Monate vs. 8,3 Monate) \[65\].

3.13 Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Patienten mit chronischer Hepatitis C-Virusinfektion und HCC, bei denen eine kurativ intendierte Tumorbehandlung durchgeführt wird, soll eine DAAD-Behandlung angeboten werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Das Überleben von Patienten mit HCV-assoziiertem HCC im Frühstadium (n=163), die nach kurativer Behandlung mittels Resektion oder Ablation mit einer DAAD-Therapie behandelt wurden, ist besser als ohne eine DAAD-Therapie (Hazard-Ratio 0,39) \[66\]. In dieser prospektiven, multizentrischen italienischen Kohortenstudie zeigte sich ebenfalls eine deutliche Risikoreduktion bzgl. einer hepatischen Dekompensation (Hazard-Ratio 0,32), das HCC-Rezidiv-Risiko wurde jedoch durch eine DAAD-Therapie nicht verbessert.

In einer kürzlich veröffentlichten, retrospektiven Kohortenstudie mit Zentren aus den USA, Japan, Süd-Korea und Taiwan konnte der durch eine DAAD-Therapie beschriebene Überlebenvorteil bestätigt werden \[67\]. Die meisten in dieser Arbeit erfassten Patienten wurden kurativ behandelt (n=453). Für diese Patienten mit SVR nach DAAD war ein 5-Jahresüberleben wesentlich wahrscheinlicher als für Patienten ohne DAAD-Therapie (92% vs. 71%). Bei Patienten, die eine palliative HCC-Behandlung erhielten (n=189), war der Effekt einer DAAD-Therapie ebenfalls deutlich (5-Jahresüberleben: 74% vs. 47% ohne DAAD-Therapie). Der Effekt war im Gesamtkollektiv unabhängig vom Grad der Leberfunktionsstörung (keine Zirrhose, Child-Pugh A oder Child-Pugh B Zirrhose) nachweisbar.
3.1 Risikofaktoren, Prävention und Früherkennung

3.1.3 Vorsorgeuntersuchung

<table>
<thead>
<tr>
<th>3.14</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad A</td>
<td>Patienten mit Leberzirrhose im Stadium Child-Pugh A und B soll die Teilnahme an einer HCC-Früherkennung angeboten werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence 2</td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.15</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit Leberzirrhose, die zur Lebertransplantation gelistet sind, soll die Teilnahme an einer HCC-Früherkennung angeboten werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Der Nutzen und die Praktikabilität einer HCC-Früherkennung ist von verschiedenen Faktoren abhängig, wie z.B. dem HCC-Risiko und der Akzeptanz der Zielpopulation, der Verfügbarkeit und Kosten geeigneter Testverfahren und der Verfügbarkeit und Effektivität einer Behandlung [69]. Das Ziel der HCC-Früherkennung ist es, die Erkrankung in einem frühen Stadium zu diagnostizieren und so die Mortalität durch effektive Behandlungsmethoden zu senken. Dies gilt auch für Patienten auf der Warteliste für eine Lebertransplantation. Da Patienten mit einem Leberversagen bei Leberzirrhose im Stadium Child-Pugh > B 8 Punkte, die nicht für eine Lebertransplantation geeignet sind, nicht therapiefähig sind, ist eine Früherkennung in dieser Situation nicht sinnvoll [70].

Für alle anderen Patienten mit Leberzirrhose oder deutlich erhöhtem Risiko ist eine Früherkennung sinnvoll [3], [17], [30].

Aufgrund einer erhöhten HCC-Inzidenz bei kaukasischen Patienten mit chronischer HBV-Infektion und PAGE-B-Score ≥ 10 ist für diese Patienten auch ohne Leberzirrhose eine Früherkennung wichtig (siehe Empfehlung 3.3.). Eine Früherkennung bei Patienten mit einer fortgeschrittenen Leberfibrose anderer Ursachen (siehe Empfehlung 3.2.) erscheint ebenfalls sinnvoll, prospektive Daten zum Nutzen einer Früherkennung fehlen jedoch noch.
3.16 Evidenzbasierte Empfehlung geprüft 2022

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierter Befund</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Im Rahmen der HCC-Früherkennung soll alle 6 Monate eine Ultraschalluntersuchung der Leber durchgeführt werden.</td>
</tr>
</tbody>
</table>

Level of Evidence: 2 [68]; [71]; [72]

Starker Konsens

3.17 Evidenzbasierte Empfehlung geprüft 2022

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierter Befund</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Die Früherkennung kann durch eine AFP-Bestimmung ergänzt werden.</td>
</tr>
</tbody>
</table>

Level of Evidence: 1 [73]

Starker Konsens

AFP: α-Fetoprotein

3.18 Evidenzbasierte Empfehlung geprüft 2022

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierter Befund</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bei Patienten mit chronischer Lebererkrankung sollte das Fibrosestadium wiederholt erhoben werden, um das HCC-Risiko besser einzuschätzen.</td>
</tr>
</tbody>
</table>

Level of Evidence: 3 [69]; [74]

Starker Konsens

Die Sonographie ist eine Technik zur Früherkennung. Im Rahmen der HCC-Früherkennung ist die Durchführung einer qualitätsge sicherten Ultraschalluntersuchung wünschenswert. Ein verdächtiger Befund erfordert eine weitere Abklärung mittels MRT/CT.
Die Früherkennung des HCC mit alleiniger Sonographie ist unbefriedigend. Obwohl in den EASL- und AASLD-Leitlinien keine AFP-Bestimmung empfohlen wird, zeigte eine vor kurzem veröffentlichte Metaanalyse, dass die Sensitivität der Früherkennung durch eine zusätzliche AFP-Bestimmung erhöht wird [73].

Weitere Tumormarker (AFP-L3, DCP, PIVKA-II) befinden sich in der klinischen Entwicklung [81][75]. Insbesondere für PIVKA-II belegen eine Reihe retrospektiver Validierungsstudien das Potenzial zur Früherkennung von Hepatozellulären Karzinomen bei Risikopatienten mit HBV Infektion oder Zirrhose sowie als Marker von Tumorrezidiven nach Therapie [79][78][77][76]. Der GALAD Score als Kombination der Marker AFP, AFP-L3 und DCP ist den Einzelmarkern in Fall-Kontroll- und retrospektiven Studien überlegen [80]. Publizierte prospektive Daten zum Einsatz fehlen derzeit.

Da die Diagnose einer NASH eine präkanzeröse Hepatopathie darstellt mit Entwicklung von Hepatozellulären Karzinomen (HCC) und seltener auch intrahepatischen Cholangiokarzinomen sollte eine entsprechende Surveillance erfolgen [83], [84]. Die HCC-Inzidenz wird bei NASH Patienten ohne Leberzirrhose mit 0,02% pro Jahr angegeben und steigt bei Vorliegen einer Leberzirrhose auf 1,5% pro Jahr an [85].

3.2 Histopathologische und molekulare Diagnostik

<table>
<thead>
<tr>
<th>3.19</th>
<th>Konsensbasierte Empfehlung</th>
<th>modifiziert 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Vor einer palliativen Therapie oder in der kurativen Situation bei unklarem Kontrastmittelverhalten in zwei unabhängigen Bildgebungen sollte ein bioptisches Verfahren eingesetzt werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Die Komplikationsrate der Biopsie eines HCC ist gering und umfasst das Risiko einer Blutung und der sog. Stichkanalabsiedlung. Geringe, nicht behandlungsbedürftige Blutungen treten in etwa 3-4% der Fälle auf während transfusionsbedürftige Blutungen selten sind (0,5 %) [89]. Metaanalysen haben gezeigt, dass Stichkanalabsiedlungen ebenfalls selten sind (2,7 %), typischerweise spät auftreten (im Mittel nach 17 Monaten) und in der Regel gut therapierbar sind [90, 91]. Sie haben auch keinen negativen Einfluss auf das Überleben und den Erfolg der therapeutischen Maßnahmen [91, 92].
3.2.1 Typisierung des Hepatozellulären Karzinoms

Konsensbasierte Empfehlung

EK

Die Typisierung des HCCs soll sich nach der aktuellen WHO-Klassifikation richten. Hierbei sollten zum einen Sonderformen (z.B. fibrolamelläres HCC und mischdifferenzierte Tumoren (kombiniertes HCC/(i)CCA)) und wenn möglich auch das frühe HCC vom progredienten HCC und prämalignen Läsionen unterschieden werden. Es sollte eine sichere Unterscheidung von Sonderformen des intrahepatischen Cholangiokarzinoms, Lebermetastasen und auch benignen Lebertumoren erfolgen.

Konsens

iCCA: Intrahepatisches Cholangiokarzinom

Therapeutisch relevant ist die Unterscheidung des HCCs von seinen malignen Differenzialdiagnosen. Sobald sich neben der hepatozellulären Differenzierung eine biliäre Differenzierungskomponente zeigt, ist die Diagnose eines kombinierten HCC/(i)CCA zu stellen, für die formal weder die Therapieleitlinien des HCC noch des CCA gelten. Die Typisierung der Lebertumoren erfolgt primär histologisch; falls erforderlich kann die Anwendung linientypischer immunhistologischer Marker helfen (s. unten).

Entscheidend ist die Histologie in der Differenzialdiagnose hochdifferenzierter hepatozellulärer Tumoren. Zu berücksichtigen sind hierbei neben dem hochdifferenzierten HCC seine Vorläuferläsionen, die Dysplastischen Knoten [94], sowie das Hepatozelluläre Adenom und die Fokale Noduläre Hyperplasie. Während sog. frühe HCCs (<2 cm Durchmesser, hochdifferenziert, nicht umkapselt) kein signifikantes Metastasierungsrisiko tragen, können beim sog. progredienten (hochdifferenzierten) HCC intra- und extrahepatische Metastasen auftreten [95]. In der Dignitätsbestimmung können immunhistologische und molekularpathologische Marker helfen (s. dort).
3.2 Histopathologische und molekulare Diagnostik

3.2.2 Histopathologische Untersuchungen und Beurteilung eines Resektats oder einer Biopsie

<table>
<thead>
<tr>
<th>3.21</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Bearbeitung und Befundung eines Resektats oder Explantats soll die Ausdehnung des Tumors (Staging) gemäß der aktuellen TNM-Klassifikation, seinen Typ (Typing) und Differenzierungsgrad (Grading) und den Status des Resektatrandes (R-Klassifikation) sowie den Status der nichttumorösen Leber ermitteln.</td>
<td></td>
</tr>
</tbody>
</table>

Die Bearbeitung und Befundung von Resektionen oder Transplantationen bei HCC sollten die Empfehlungen des International Collaboration on Cancer Reporting (ICCR) berücksichtigen [96].

<table>
<thead>
<tr>
<th>3.22</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Wenn die Diagnose eines HCCs nicht mithilfe der konventionellen Histologie gestellt werden kann, sollen in Abhängigkeit vom histopathologischen Erscheinungsbild weitere, insbesondere immunhistologische und/oder molekularpathologische Untersuchungen zur Sicherung der Diagnose eingesetzt werden.</td>
<td></td>
</tr>
</tbody>
</table>

Prinzipiell kann die Diagnose eines HCC bei Vorliegen typischer histologischer Merkmale der Malignität (erhebliche Atypie, interstitielle und/oder vaskuläre Invasion, grobe trabekuläre Architekturstörung) und der hepatozytären Differenzierung (v.a. Galleproduktion, gut definiertes, kräftig gefärbtes Zytoplasma, rundliche Kerne mit prominenten Nukleolen, trabekuläres Wachstum) anhand der Histologie diagnostiziert werden. |

In der Dignitätsbestimmung können immunhistologische und molekularpathologische Marker helfen (s. dort), insbesondere wenn eindeutige histologische Malignitätskriterien (interstitielle oder vaskuläre Invasion, eindeutige trabekuläre Architek turstörung) nicht erfasst sind. Das immunhistologische Markerpanel aus Glypican 3, HSP70 und Glutaminsynthetase hat bei etwa 70% Sensitivität fast 100% Spezifität im Malignitätsnachweis [99], [100]. Weitere immunhistologische Marker können in fraglichen Fällen ggf. unterstützen. Mutationen im hTERT Promotor treten häufig und früh im Transformationsprozess auf und ihre Bestimmung kann die Malignitätsaussage unterstützen.

3.2.3 Molekulare Diagnostik

<table>
<thead>
<tr>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td></td>
</tr>
<tr>
<td>Molekularpathologische Untersuchungen können zur Unterstützung der Tumortypisierung und Dignitätsbestimmung von hepatzellulären Tumoren eingesetzt werden. Prädiktive molekulare Analysen sind in der regulären Diagnostik noch nicht erforderlich, können aber zur erweiterten Therapieplanung eingesetzt werden.</td>
<td></td>
</tr>
</tbody>
</table>

Unter diesen molekularen Veränderungen im HCC finden sich neben bislang therapeutischen Konzepten nicht zugängigen Veränderungen auch solche, die prinzipiell einer gezielten molekularen gesteuerten Therapie zugängig wären (z.B. MET-Aktivierung, KRAS-Mutation, Aktivierung der FGF19-FGFR4-KLB-Achse, PD-(L)1-Aktivierung, Mikrosatelliten-Instabilität (selten), hohe Tumormutationslast. Ihre Einbindung in klinische Studien ist jedoch entweder Gegenstand laufender Studien bzw. entsprechende Studien haben nicht zu entsprechenden Therapieerfolgen in Europa/Deutschland geführt. Bezuglich der derzeit in Deutschland bestehenden entitätsübergreifenden Zulassung für
Neurotroph Tyrosinkinasen (NTRK)-Inhibitoren ist festzuhalten, dass bisher kein Vor-kommen der für die Therapie erforderlichen NTRK-Translokationen beim HCC gezeigt werden konnte, so dass keine fassbare Testindikation besteht. Anders als bei anderen Tumorarten besteht damit derzeit noch keine definitive Indikation im Rahmen der re-gelhaften diagnostischen Versorgung therapiesteuernde molekulare Marker beim HCC zu testen.

Dennoch kann die molekularpathologische Testung therapiesteuernder Marker beim HCC unter bestimmten Bedingungen sinnvoll sein. Dies ist insbesondere in zent-rumsbasierten Ansätzen zu erwägen. Hier spielt die Einschleusung in durch molekulare Marker gesteuerte HCC-Studien oder auch entitätsübergreifende Studien eine wichtige Rolle. Wichtig ist dieses Vorgehen auch bei Erschöpfung leitliniengerechter Therapieoptionen, wobei hier im Rahmen von spezifischen Strukturen (insbesondere molekulare Tumorboards) ein individueller Heilversuch eine Therapieoption darstellen kann.
3.3 Bildgebende Diagnostik

3.3.1 Anhand welcher Verfahren und Befunde kann ein HCC mittels Bildgebung diagnostiziert werden?

Die Diagnose eines HCCs basiert auf kontrastverstärkten bildgebenden Untersuchungen und/oder histologischen Analysen. Der Diagnosealgorithmus eines Patienten mit einem HCC-verdächtigen Knoten ist im Diagnostikalgorithmus (S. 49) dargestellt.

Das HCC soll primär anhand seiner typischen Kontrastmitteldynamik mit arterieller Hypervaskularisation und Auswaschen in der portalvenösen und venösen Phase im kontrastverstärkten MRT bei Raumforderungen mit einem Durchmesser von > 1 cm diagnostiziert werden [101].

Mehrere Studien haben die diagnostische Genauigkeit der mehrphasigen Computertomographie mit magnetresonanztomographischen Untersuchungen mittels hepatobiliärem Kontrastmittel verglichen [102], [103], [104], [105], [106], [107], [108], [109]. Diese Studien konnten eine höhere Sensitivität bei vergleichbarer Spezifität für das MRT im Vergleich zum CT zeigen. Insbesondere bei kleineren Läsionen waren die Ergebnisse signifikant unterschiedlich zugunsten des MRTs.

<table>
<thead>
<tr>
<th>3.24</th>
<th>Konsensbasierter Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Sonographie kann zur initialen Einschätzung im Risikokollektiv verwendet werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.25</th>
<th>Evidenzbasierter Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>Das HCC in der zirrhotischen Leber soll bildgebend anhand seiner typischen Kontrastmitteldynamik mit arterieller Hypervaskularisation und Auswaschen in der portalvenösen und venösen Phase im kontrastverstärkten MRT diagnostiziert werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>[104]; [110]; [111]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

3.26 Konsensbasierte Empfehlung geprüft 2022

<table>
<thead>
<tr>
<th>Konsens</th>
<th>Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Ein triphasisches CT und/oder CEUS sollte bei unklarem MRT-Befund oder Kontraindikationen für das MRT zur weiteren Diagnostik herangezogen werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td>CEUS: Kontrastverstärkte Sonographie</td>
</tr>
</tbody>
</table>

Das HCC ist kein hoch avider Tumor für FDG-PET, da die FDG-Speicherung in weniger als 40% der Fälle beobachtet wird [115] und die meisten gut differenzierten HCCs 18F-FDG-PET negativ sind. Andere Tracer wie z.B. 11C-Cholin steigern die Gesamterfasungsrate des PET/CTs. Die Sensitivität dieser Tracer können jedoch nicht mit der kontrastverstärkten MRT und CT verglichen werden [112]. Das PET/CT sollte aufgrund einer hohen Anzahl von falsch negativen Befunden somit nicht zur primären Diagnostik herangezogen werden. Dennoch kann in Einzelfällen die Untersuchung mittels 18F-FDG-PET indiziert sein, da das Speicherverhalten einen potenziell prognostischen Wert zu besitzen und mit schlechter Prognose, erhöhtem Serum-Alpha-Fetoprotein und vaskulärer Invasion assoziiert zu sein scheint. Dieses könnte z.B. die Auswahl geeigneter Patienten für eine chirurgische Resektion oder zur Lebertransplantation erleichtern [113], [114].

3.32 Bildgebende Verfahren zum Staging des HCC

Sobald die Diagnose gestellt ist, ist die prognostische Beurteilung ein entscheidender Schritt in der Behandlung des Hepatozellulären Karzinoms (HCC).

<table>
<thead>
<tr>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Das Staging eines HCCs soll ein kontrastverstärktes CT des Thorax und des Abdomens beinhalten. Falls das kontrastverstärkte MRT das gesamte Abdomen diagnostisch abdeckt, soll lediglich ein nativer CT-Thorax ergänzt werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

3.33 Diagnostikalgorithmus

Malignitätsverdächtige Leberrundherde sollen in einer therapierelvanten Konstellation unmittelbar abgeklärt werden, siehe auch Diagnosealgorithmus eines Patienten mit einer HCC-verdächtigen Raumforderung (Abbildung 1: Diagnostikalgorithmus).
Abbildung 1: Diagnostikalgorithmus HCC
3.28 Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Unklare Leberherde < 1 cm sollten in 3 Monatsintervallen mittels des bestgeeigneten kontrastmittelverstärkten Schnittbildverfahrens kontrolliert werden.</td>
</tr>
</tbody>
</table>

Level of Evidence

| 4 | [116] |

Starker Konsens

3.29 Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bei Leberherden ≥ 1 cm und untypischem Kontrastmittelverhalten sollte bei kurativer Behandlungsindikation eine zweite kontrastmittelverstärkte Bildgebung mittels CT und/oder CEUS erfolgen.</td>
</tr>
</tbody>
</table>

Level of Evidence

| 4 | [116] |

Konsens

3.30 Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
</tr>
</tbody>
</table>

Starker Konsens
3.3.4 Staging Systeme (Clip, TNM, Okuda, BCLC etc.)

Sobald die Diagnose gestellt ist, ist die prognostische Beurteilung ein entscheidender Schritt in der Behandlung des Hepatozellulären Karzinoms. Die genaue Klassifikation soll eine Prognose und die Auswahl der am besten geeigneten Behandlungen für die Patienten ermöglichen.

Das Barcelona Clinic Liver Cancer (BCLC) Staging System wurde wiederholt validiert und wird für prognostische Vorhersagen und die Zuordnungen von geeigneten Behandlungen empfohlen \([120]\). Neben prognostischen Variablen im Zusammenhang mit Tumorstatus, Leberfunktion und Gesundheitsleistungsstatus beinhalten sie multiple in Kohorten- und randomisierten Studien eruierten Variablen.

3.3.1 Evidenzbasierte Empfehlung geprüft 2022

Empfehlungsgrad A

Für die klinische Entscheidungsfindung bei HCC sollen die Tumorlast, die Leberfunktion und der Leistungsstatus berücksichtigt werden.

Level of Evidence 2

\([121]; [122]; [123]; [124]; [125]; [126]; [127]; [128]; [129]; [5]\)

Konsens

Das Hong-Kong-Staging System beinhaltet weitere Biomarker (Alpha-Fetoprotein (AFP), des-Gamma-Carboxyprothrombin (DCP) etc.) ist jedoch fast ausschließlich HBV bezogen und zudem existiert keine externe Validierung in westlichen Ländern, die seine Leistungsfähigkeit in anderen Populationen und allen Stadien der Erkrankung erfasst \([130]\).

3.3.2 Konsensbasierte Empfehlung geprüft 2022

EK

Zur Stratifizierung vor Operationen/Transplantationen soll ergänzend die TNM Klassifikation verwendet werden.

Starker Konsens

3.3.3 Konsensbasierte Empfehlung geprüft 2022

EK

Bezüglich der bildmorphologischen Tumeraspekte sollen bildgebende Analyseverfahren verwendet werden, die die Vaskularität berücksichtigen.

Starker Konsens

Für die Abschätzung der Tumorreduktion des Hepatozellulären Karzinoms mittels CT wurden die mRECIST-Kriterien eingeführt. Über die, für den Therapieausgang wichtige Genauigkeit dieser Methode, liegen jedoch weiterhin nur wenige Daten vor.

Das Liver Imaging /Reporting and Data System (LI-RADS) standardisiert die Interpretation und Berichterstattung von bildgebenden Untersuchungen für Patienten mit einem
erhöhten Risiko für die Entstehung eines Hepatozellulären Karzinoms. Für fokale Leberbeobachtungen weist es Kategorien (LR-1 bis 5, LR-M, LR-TIV) zu, die die relative Wahrscheinlichkeit der Benignität oder Malignität der jeweiligen Beobachtung widerspiegeln. Die zugeordneten Kategorien basieren auf Haupt- und Nebenbildmerkmalen, die vom American College of Radiology (ACR) entwickelt und in vielen Studien validiert wurden. Diese LI-RADS Übersicht fasst die relevanten CT- und MRT-Merkmale zusammen und stellt für Radiologen, die mit LI-RADS nicht vertraut sind, einen bildgestützten Ansatz für die Anwendung des Systems vor. Die weit verbreitete Anwendung von LI-RADS für die Berichterstattung würde dazu beitragen, die Variabilität zwischen den Radiologen zu verringern und die Kommunikation zwischen Radiologen, Hepatologen, Leberchirurgen und Onkologen zu verbessern, was zu einem verbesserten Patientenmanagement führen würde. Bis zum heutigen Zeitpunkt hat sich dieses System in Deutschland leider nicht flächendeckend durchgesetzt.

3.4 Operative und interventionelle Therapieverfahren

<table>
<thead>
<tr>
<th>3.34</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit einem Hepatozellulären Karzinom sollen in einer interdisziplinären Tumorkonferenz vorgestellt werden.</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.1 Operative Therapieverfahren

3.4.1.1 Lebertransplantation

<table>
<thead>
<tr>
<th>3.35</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit einem kurativ behandelbaren Hepatozellulären Karzinom sollten in einem Lebertransplantationszentrum vorgestellt werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.36</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Geeignete Patienten mit Leberzirrhose und einem irresektablen HCC innerhalb der Mailand-Kriterien (BCLC A) sollen für eine Lebertransplantation evaluiert werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.37</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Auch bei formal resektablen oder grenzwertig resektablen HCC-Befunden in Zirrhose kann innerhalb der Mailand-Kriterien eine Indikation zur Transplantation bestehen.</td>
<td></td>
</tr>
</tbody>
</table>

Die Lebertransplantation für Patienten mit einem auf die Leber begrenzten Tumor ist langfristig mit den geringsten Rezidivraten und dem besten Gesamtüberleben (> 5 Jahre) verbunden [131], [132]. Durch Fortschritte in der chirurgischen, interventionellen und medikamentösen Therapie können heute bei resektablen Befunden immer bessere Überlebensraten erreicht werden, allerdings finden sich bei allen anderen Therapieformen auch in frühen Tumorstadien (Tabelle 7: Übersicht der gängigsten Selektionskriterien zur Lebertransplantation, S. 55) innerhalb von 5 Jahren in bis zu 80% der Fälle Rezidive oder Zweitumoren [133], [134]. Die Lebertransplantation ist die einzige Therapieform, bei der sowohl das HCC als auch die zugrunde liegende Leberzirrhose therapiert werden. Im Stadium BCLC A kommt es nach Lebertransplantation zu nur niedrigen Rezidivraten von etwa 10-12%. Daher resultieren im Langzeitverlauf bei adäquater Patientenselektion auch die besten Überlebensraten. Die Transplantation ist somit die effektivste der verfügbaren Therapieoptionen. Daher sollen Patienten mit einem auf die Leber begrenzten HCC, die für eine Lebertransplantation geeignet sind oder nach entsprechenden vorbereitenden Maßnahmen (z.B. Alkoholkarenz) geeignet sein könnten, in einem Lebertransplantationszentrum vorgestellt werden.

Prinzipiell besteht für die meisten Patienten mit einem auf die Leber begrenzten HCC eine mehr oder weniger hohe Chance auf eine kurative Behandlung durch eine Lebertransplantation [135]. Entscheidend für die Auswahl geeigneter Patienten ist der zu erwartende Vorteil für die Transplantation im Vergleich zu alternativen Behandlungsstrategien. Daneben spielt natürlich auch die beschränkte Verfügbarkeit von
Spenderorganen eine wichtige Rolle. Neben der onkologischen Prognose muss die allgemeine Lebenserwartung und das Alter des Patienten in die Entscheidungsfindung einbezogen werden.

Aus Mangel an etablierten tumorbiologischen Kriterien (mit Ausnahme des Differenzierungsgrades und des AFP-Werts, s.u.), orientieren sich die verfügbaren Analysen vor allem an morphometrischen Kriterien, d.h. an der Anzahl und Größe der Tumorknoten. Bei rein hepatischem Befall korreliert das Rückfallrisiko nach Lebertransplantation mit der Anzahl und (maximalen bzw. kumulativen) Größe der vorhandenen Tumorknoten [136].

Als etabliertes Standardkriterium für die Indikation zur Lebertransplantation werden in den meisten Ländern, wie auch in Deutschland, die sogenannten Mailand-Kriterien angewendet [137]. Patienten mit einem irresektablen HCC innerhalb der Mailand-Kriterien weisen nach Lebertransplantation eine 5-Jahres-Überlebensrate von 65 - 80% und eine HCC-Rezidivrate von etwa 10-12% auf [138] Daher stellen die Mailand-Kriterien auch in Deutschland die akzeptierte Basis für eine Priorisierung zur Lebertransplantation dar. Bei anhaltender Erfüllung dieser Kriterien wird der entsprechende matchMELD alle 3 Monate hochgestuft. Dies erfolgt aktuell gemäß den Richtlinien der Bundesärztkammer nur, sofern ein solitäres HCC >20 mm und ≤50mm vorliegt, bzw. bis zu 3 Herde > 10 mm und ≤30mm [139]. Herde, die weniger als 10 mm durchmessen, werden für die Klassifizierung dagegen nicht berücksichtigt. Andere Selektionskriterien als die Mailand-Kriterien haben derzeit in Deutschland keinen Einfluss auf die Priorisierung der Patienten. Während der Zeit auf der Warteliste muss regelmäßig kontrolliert werden, ob Patienten die Mailand-Kriterien noch erfüllen, oder ob es zu einem Tumorprogress gekommen ist. Daher sollen mindestens alle 3 Monate Verlaufsuntersuchungen mittels mehrphasiger, kontrastmittelverstärkter CT oder MRT-Untersuchungen des Abdomens vorgenommen werden. Zusätzlich sollten auch AFP-Verlaufskontrollen (s.u.) und in regelmäßigen Abständen (ca. 6 Monate) ein CT des Thorax zum Ausschluss von Lungenmetastasen veranlasst werden [139].

International liegen große retrospektive Analysen bezüglich einer Ausdehnung der Auswahlkriterien zur Lebertransplantation vor. Dabei stellen die UCSF-Kriterien (University of California, San Francisco) [141] und die up-to-7 Kriterien [142] die am häufigsten verwendeten erweiterten Selektionskriterien (Tabelle 7: Übersicht der gängigsten Selektionskriterien zur Lebertransplantation) dar.
Tabelle 8: Übersicht der gängigsten Selektionskriterien zur Lebertransplantation

<table>
<thead>
<tr>
<th></th>
<th>Solitärer Knoten</th>
<th>Mehrere Tumorknoten</th>
<th>5-Jahres-Überlebensrate nach Lebertransplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine extrahepatischen Manifestationen (cN0M0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keine makrovaskuläre Gefäßinvasion (cV0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>matchMELD-Standardkriterien (Bundesärztekammer)</td>
<td>≥ 2cm und ≤ 5cm</td>
<td>≥ 1cm und ≤ 3cm</td>
<td></td>
</tr>
<tr>
<td>Mailand-Kriterien [137]</td>
<td>≤ 5 cm</td>
<td>Max 3 Herde ≤ 3cm</td>
<td>> 70%</td>
</tr>
<tr>
<td>Up-to-7 Kriterien [142]</td>
<td>≤ 7 cm</td>
<td>Summe aus Durchmesser des größten Tumors (cm) und Anzahl der Tumorknoten ≤ 7</td>
<td>> 70%</td>
</tr>
<tr>
<td>UCSF-Kriterien [141]</td>
<td>≤ 6,5 cm</td>
<td>Max. 3 Herde ≤ 4,5 cm und ein maximaler addierter Tumordurchmesser ≤ 8 cm</td>
<td>> 70%</td>
</tr>
</tbody>
</table>

Publizierte Expertenmeinungen und Empfehlungen von Fachgesellschaften stimmen überein, dass eine Transplantation bei Verwendung erweiterter Auswahlkriterien (d.h. außerhalb der Mailand-Kriterien) erst nach Dokumentation eines Ansprechens auf eine neoadjuvante, lokoregionäre Therapie [143], [144], [145], [146] (Details siehe unten) erfolgen sollte, da ansonsten die Rezidivraten nach Transplantation deutlich ansteigen.

Auch bei formal resektablen HCC-Befunden in Zirrhose kann eine Indikation zur Transplantation gestellt werden, wenn davon auszugehen ist, dass das Rezidivrisiko nach Resektion und/oder Lokalablation sehr hoch ist [147]. Ob hier zunächst eine lokale Therapie (Resektion/Lokalablation) erfolgen sollte, und nur im Falle eines Tumorrezidives die Indikation zur Transplantation gestellt wird (sogenannte Salvage Transplantation) oder ob im Falle eines hohen Rezidivrisikos schon primär die Indikation zur Transplantation gestellt werden sollte [148], muss im lokalen Tumorboard bzw. der lokalen Transplantationskonferenz im Sinne einer Nutzen/Risiko-Abwägung entschieden werden [149].

In einer retrospektiven Analyse zur Salvage Transplantation konnte nachgewiesen werden, dass dieses Konzept bei solitären Tumoren oft gut funktioniert und dadurch sogar Organe „eingespart“ werden können [150], so dass nicht in allen Fällen direkt eine Transplantation erfolgen muss [151]. Weitere Parameter, die in die Entscheidungsfindung mit einbezogen werden sollten, sind z.B. die Leberfunktion und zusätzliche dysplastische Knoten in der Restleber.
Tabelle 9: Definitionen

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoadjuvante Therapie</td>
<td>Behandlung, die vor einer operativen Maßnahme (z.B. Resektion oder Lebertransplantation) erfolgt, mit dem Ziel einer Verkleinerung der Tumormasse.</td>
</tr>
<tr>
<td>Bridging</td>
<td>Lokoregionäre Therapie oder Resektion eines HCC innerhalb der Mailand-Kriterien auf der Warteliste.</td>
</tr>
</tbody>
</table>

3.4.1.1.1 Kontraindikationen für eine Lebertransplantation

3.38 Konsensbasierte Empfehlung geprüft 2022

EK

Bei extrahepatischen Tumormanifestationen und/oder einer makrovaskulären Invasion der Lebergefäße soll eine Lebertransplantation nicht durchgeführt werden.

Starker Konsens

3.39 Konsensbasierte Empfehlung geprüft 2022

EK

Bei einem AFP-Wert >1000 ng/ml sollte keine Indikation zur Transplantation ohne neoadjuvante Therapie gestellt werden.

Starker Konsens
3.40 Konsensbasierte Empfehlung geprüft 2022

EK

Bei AFP-Anstieg auf >1000 ng/ml unter Bridging-Therapie sollte die Transplantation nicht durchgeführt werden.

Starker Konsens

Neben bildmorphologischen Kriterien werden auch zunehmend Biomarker zur Vorher- sage des Rezidivrisikos untersucht. Der einzige HCC-Biomarker, für den bisher eine ausreichende Datengrundlage vorliegt, ist der AFP-Wert. Es ist bekannt, dass ein hoher oder rasch ansteigender AFP-Wert mit einer schlechteren postoperativen Prognose be- züglich des HCC-Rezidivrisikos vergesellschaftet ist [156]. So konnte z.B. ein monatli- cher AFP-Anstieg größer 15 ng/ml als ungünstiger prognostischer Parameter nachge- wiesen werden, ebenso wie AFP-Werte über 500 ng/ml [157] bzw. von mehr als 1000 ng/ml [158]. In einer weiteren Analyse konnte ein AFP-Wert > 1000 ng/ml als ein starker préoperatoriver Surrogatmarker für eine Gefäßinvasion innerhalb der Mailand-Kriterien gefunden werden [159]. Anhand der aktuellen Datenlage kann keine eindeutige Emp- fehlung für eine AFP-Obergrenze als absolute Kontraindikation zur Lebertransplanta- tion ausgesprochen werden. Die meisten Autoren stimmen jedoch überein, dass bei einem AFP-Wert über 1000 ng/ml unabhängig von der bildmorphologisch sichtbaren Anzahl und Größe der Tumorknoten das Rezidivrisiko nach Transplantation signifikant ansteigt und daher die Indikation zur Transplantation ohne neoadjuvante Therapie nicht gestellt werden sollte. Dies gilt auch, wenn sich der Tumor bildmorphologisch formal innerhalb der Mailand-Kriterien befindet [159]. So empfiehlt z.B. die AASLD, dass eine Lebertransplantation wieder erwogen werden kann, wenn der AFP-Wert unter lokore- gionärer Therapie auf weniger als 500 ng/ml abfällt [160]. Der Abfall eines vorher stark erhöhten AFP-Wertes auf < 500 ng/ml ist mit einer günstigen Prognose assoziiert, so dass dann eine Transplantation sinnvoll erscheint. So lag die HCC-Rezidivrate in ei- ner Auswertung der United Network of Organ Sharing (UNOS)-Datenbank bei 35,0 % wenn der AFP-Wert bei Transplantation > 1000 ng/ml betrug. Das Rezidivrisiko sank auf 13,3 % im Falle eines AFP-Abfalls auf <500 bis 101 g/ml und es sank auf 7,2 % wenn das AFP vor der Transplantation auf 100 ng/ml oder weniger abfiel (p < 0,001) [161]. Für die Abschätzung der individuellen Prognose unter Berücksichtigung des AFP-Wertes und der bildmorphologischen Kriterien vor bzw. unter lokoregionärer Therapie kann der Metroticket Rechner (http://www.hcc-olt-metroticket.org/) hilfreich sein.

3.41 Konsensbasierte Empfehlung geprüft 2022

EK

Das chronologische Alter stellt per se keine Kontraindikation dar. Wenn Patienten älter als 65 Jahre sind, sollte die Indikation zur Lebertransplantation allerdings be- sonders sorgfältig geprüft werden.

Starker Konsens

Das chronologische Alter stellt per se keine Kontraindikation für eine Lebertransplanta- tion dar [162], [163], entscheidender ist das biologische Alter. Im Rahmen der Trans- plantationsevaluation sollen daher prognoserelevanten Komorbiditäten insbesondere bei älteren Patienten (> 65-70 Jahre) ausgeschlossen werden und damit eine Akkumulation von Risikofaktoren vermieden werden. Hierbei sind insbesondere kardiovaskuläre Komorbiditäten und Malignome zu nennen. Eine Lebertransplantation kann auch bei
über 65-Jährigen [164], [165], [166] bzw. über 70-Jährigen mit guter Transplantatfunktion und langfristig guter Lebensqualität erfolgreich durchgeführt werden [167], [168], [169], [170].

3.4.1.1.2 Bridging-Therapie

<table>
<thead>
<tr>
<th>3.42</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Vor Beginn einer Bridging-Therapie soll eine Kontaktaufnahme mit einem Transplantationszentrum erfolgen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Vor Einleitung einer Bridging-Therapie ist eine Kontaktaufnahme mit einem Transplantationszentrum erforderlich, um sicherzustellen, dass die präinterventionelle Bildgebung den Anforderungen der BÄK an das Kontrastmittel und die dynamischen Phasen genügt [139], da der Patient sonst keine Zusatzpunkte (matchMELD) auf der Warteliste erhalten kann. Eine erst nach der Bridging-Therapie erstellte ausreichende Bildgebung wird für die Vergabe der SE Punkte nicht akzeptiert.

<table>
<thead>
<tr>
<th>3.43</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad A</td>
<td>Patienten mit HCC (BCLC A) innerhalb der Mailand-Kriterien sollen eine Bridging-Therapie erhalten, sofern es die Leberfunktion zulässt.</td>
<td>Starker Konsens</td>
</tr>
<tr>
<td>Level of Evidence 1</td>
<td>[171]; [172]; [173]</td>
<td></td>
</tr>
</tbody>
</table>

[180], [181] belegen bessere Überlebensraten nach Transplantation bei gutem Therapieansprechen bzw. schlechtere Überlebensraten bei minderem Therapieansprechen. Außerdem liefern die meisten Studien Hinweise, dass eine (lokoregionäre) Bridging-Therapie den Tumorprogress verzögert und damit das Risiko einer Abmeldung von der Warteliste signifikant verringert. So ergab eine aktuelle Metaanalyse ein relatives Risiko für eine HCC-bedingte Abmeldung von der Transplantationswarteliste bei Anwendung einer lokoregionärer Bridging-Therapie von 0,11 (95% Konfidenzintervall [KI]: 0,07; 0,17) [172]. Allerdings war dieser Wert bei starker Heterogenität der Studien nicht statistisch signifikant. Eine multizentrische, statistische Auswertung der Daten von 1083 europäischen HCC-Patienten innerhalb der Mailand-Kriterien mittels "inverse probability of treatment weighting (IPTW)" Analyse konnte zeigen, dass bei einer Intention to Treat (ITT) Betrachtung das Risiko einer HCC-bedingten Abmeldung von der Warteliste durch eine Bridging-Therapie um 34% bis 49% gesenkt wird [182]. Bei bis zu 3 Bridging-Therapien fand sich auch eine niedrige Rezidivrate nach Transplantation. Waren dagegen 4 oder mehr Behandlungen nötig, war dies nicht mehr zu beobachten [182].

Darüber hinaus kann das Ansprechen auf eine Bridging-Therapie ähnlich wie das Downstaging (siehe unten) innerhalb der Mailand-Kriterien als ein tumorbio logisches Selektionskriterium verwendet werden und damit zu einer besseren Patientenselektion und geringeren Rezidivrate beitragen [183]. In einer Auswertung von UNOS Daten von über 3000 HCC-Patienten innerhalb der Mailand-Kriterien (Vergleich mit und ohne Bridging-Therapie) fand sich in der pathologischen Aufarbeitung der HCC-Herde ein signifikant niedrigerer Anteil von mikrovaskulärer (16,8% vs. 22,8%, p < 0,001) und makrovaskulärer Infiltration (3,4% vs. 5,1%; p < 0,001) in der Therapiegruppe (trotz initial mehr und größerer Tumoren) [138]. Dies könnte entweder für eine Verhinderung der Gefäßinvasion durch die Bridging-Therapie sprechen, wahrscheinlich aber zumindest für eine bessere Patientenselektion. Da keine ITT-Analyse vorliegt, lässt sich dies jedoch nicht mit letzter Sicherheit beantworten. Darüber hinaus konnte gezeigt werden, dass eine hohe Anzahl von notwendigen Behandlungen für eine aggressivere Tumorbiologie spricht, vor allem auch, wenn sich gleichzeitig ein steigender AFP-Wert findet. Beides geht mit einer erhöhten Rezidivrate einher [138], [146], [184], [185], [186], [187], [188], [189], selbst wenn sich das HCC bildmorphologisch weiterhin innerhalb der Mailand-Kriterien befindet.

Dagegen gilt es als erwiesen, dass bei einem sehr guten pathologischen Ansprechen im Sinne einer kompletten Remission nach einer Bridging-Therapie die HCC-Rezidivraten nach Lebertransplantation sehr gering und in manchen Serien sogar unter 5% liegen [138]. Insgesamt fand sich jedoch in dieser wie auch in anderen Auswertungen kein signifikanter Unterschied in der 5-Jahres-Überlebensrate (68 vs. 68%, p = 0,490) und der 5-Jahres-Rezidivrate (11,2 vs. 10,1%, p = 0,474), wenn alle Patienten mit und ohne Bridging-Therapie verglichen wurden.

Neben dem radiologischen Ansprechen ist daher auch der AFP-Wert bei der Einschätzung des Rezidivrisikos wichtig. So konnte gezeigt werden, dass bei normalem AFP-Wert (entweder schon vor Beginn oder unter Bridging-Therapie <20 ng/ml) das
geringstes Rezidivrisiko nach LT vorliegt (5-Jahres-Rezidivrate ca. 7%). Findet sich dagegen unter lokoregionärer Therapie ein AFP-Rückgang jedoch keine Normalisierung (>20 ng/ml), so ist das Rezidivrisiko bereits signifikant erhöht (5-Jahres-Rezidivrate ca. 14%, Hazard Ratio [HR]: 2,0, p < 0,001). Am höchsten ist das Rezidivrisiko bei ansteigendem AFP-Wert unter Bridging-Therapie (5-Jahres-Rezidivrate ca. 21%, HR: 3,1 p < 0,001) [138].

Insgesamt wird von den meisten Autoren im Feld empfohlen, bei einer zu erwartenden Wartezeit von mehr als 3 bis 6 Monaten, eine Bridging-Therapie zu beginnen, damit der Patient nicht aufgrund eines Tumorprogresses von der Warteliste genommen werden muss oder seinen matchMELD verliert [3], [160], [174]. Um den Selektionseffekt der Bridging-Therapie zu verstärken, werden im UNOS-Allokationssystem seit 2015 sogar nur noch Patienten priorisiert, bei denen die Tumoren mittels Bridging-Therapie für mindestens 6 Monate innerhalb der Mailand-Kriterien gehalten werden können.

Literaturübersicht s. Anhang (Tabelle 13: Literaturübersicht Bridging-Therapie)

<table>
<thead>
<tr>
<th>3.44</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>Für das Bridging sollen Lokalablation, Resektion, oder transarterielle Verfahren (TACE, TARE) eingesetzt werden.</td>
<td>A</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>[171]; [172]; [173]</td>
<td>1</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bisher konnte für keine der genannten Methoden ein Vorteil im Rahmen der Bridging-Therapie nachgewiesen werden, sodass die Methodenwahl von Tumorlage, Tumorgröße, Leberfunktion und der lokalen Expertise abhängt. Genauere Erläuterungen zu den einzelnen Methoden finden sich im Hintergrundtext zum Downstaging.

<table>
<thead>
<tr>
<th>3.45</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Hochpräzisionsradiotherapie (Stereotactic Body Radiotherapy; SBRT) kann als Bridging-Verfahren bis zur Lebertransplantation eingesetzt werden, wenn die weiteren Bridging-Verfahren nicht zum Einsatz kommen können.</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eine SBRT kann auch als lokale Therapie für das Bridging eingesetzt werden, für Patienten, die auf eine Lebertransplantation warten. Obwohl es keine prospektiven Studien gibt, die die Wirksamkeit und Sicherheit von SBRT in diesem Umfeld untersucht haben, kann die SBRT basierend auf retrospektiven Daten eine sichere und wirksame Alternative sein [189], [190]. Eine Intention-to-Treat-Analyse einer großen Kohorte von Patienten (n=379), die SBRT (n=36), Radiofrequenzablation (RFA) (n=99) oder TACE (n=244) erhielten, wurde von Saposchin et al. durchgeführt und zeigt bei deutlichem Selektionsbias ähnliche Drop-out-Raten zwischen den drei Gruppen (16,7%, 20,2%, 16,8%; p = 0,7) und keinen Unterschied im 1-, 3- und 5-Jahres-Überleben (5-Jahres-Überleben: 75% vs. 69% vs. 73%; p = 0,7) [191]. Darüber hinaus kann die SBRT wegen der hohen Lokalkontrollraten möglicherweise für das Downstaging oder Downsizing verwendet werden, um HCC-Läsionen auf ein Volumen innerhalb der Mailand-Kriterien herunterzustufen.

3.4.1.1.3 Downstaging

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bei geeigneten Patienten mit einem HCC außerhalb der Mailand-Kriterien und innerhalb der UCSF-Kriterien kann eine Lebertransplantation erfolgen, insbesondere dann, wenn ein Downstaging bis innerhalb der Mailand-Kriterien gelingt.</td>
<td></td>
</tr>
</tbody>
</table>

Level of Evidence 1

[172]; [192]; [193]

Starker Konsens

<table>
<thead>
<tr>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td></td>
</tr>
</tbody>
</table>

Außerhalb der UCSF Kriterien kann bei Tumoren ohne extrahepatische Manifestation und ohne Makroinvasion von Gefäßen nach Ansprechen auf eine neoadjuvante Therapie eine Evaluation zur Lebertransplantation erwogen werden.

Starker Konsens

Patienten außerhalb der Mailand-Kriterien weisen insgesamt eine signifikant höhere Rezidivrate und damit ein verringertes Gesamtüberleben nach einer Lebertransplantation auf. Die Prognose korreliert mit der maximalen Tumogröße und der Anzahl der Tumorknoten [142]. Sorgfältig ausgewählte Patienten außerhalb der Mailand-Kriterien können nach Lebertransplantation jedoch ähnlich gute 5-Jahres-Überlebensraten erreichen wie Patienten innerhalb der Mailand-Kriterien [145], [158], [194]. Die Patientenselektion erfolgt dabei in den meisten Analysen durch Ansprechen auf eine neoadjuvante, lokoregionäre Therapie (Downstaging). Weitere Parameter zur Patientenselektion werden evaluiert. Mit Ausnahme des AFP-Werts (s.u.) und des Tumorgradings (s.u.) ist die Evidenzlage für die anderen Parameter jedoch nicht ausreichend, so dass zum momentanen Zeitpunkt keine weiteren Parameter für die klinische Routine empfohlen werden können.
Gute Langzeitergebnisse nach erfolgreichem Downstaging mit 5-Jahres-Überlebensraten von 65 – 70 % sind vor allem für Patienten innerhalb der “up-to-seven” (5-Jahres-Überlebensrate 71,2 % [142]) und/oder der UCSF Kriterien (5-Jahres-Überlebensrate 72,4 %) [141] durch zahlreiche retrospektive Analysen an teilweise großen, multizentrischen Kollektiven belegt. Die Patientenselektion über das Therapieansprechen (Downstaging) ist dabei effektiv. So haben Patienten außerhalb der Mailand-Kriterien, bei denen durch lokoregionäre Therapie ein Downstaging bis zum Erfüllen der Mailand-Kriterien erreicht werden kann, eine gleich gute Prognose nach Lebertransplantation wie Patienten, die bereits initial diese Kriterien erfüllen [158], [160], [162], [195]. Im UNOS-Raum werden daher Patienten innerhalb der UCSF-Kriterien nach Downstaging priorisiert und erhalten einen entsprechenden matchMELD. In Deutschland ist eine Transplantation auch außerhalb der Mailand-Kriterien möglich. Es konnte eine Priorisierung mit Zuweisung eines matchMELD jedoch nur im Rahmen der TOM-Studie erfolgen. Diese Studie wurde jedoch aktuell geschlossen (Stand April 2022).

Es existieren auch Daten, dass ein Therapieansprechen ein günstiger prognostischer Faktor per se ist, selbst wenn die Mailand-Kriterien nicht erfüllt sind. Eine Hilfestellung für die individuelle Prognose eines HCC Patienten vor oder nach neoadjuvanter Therapie kann der Metroticket Rechner (http://www.hcc-olt-metroticket.org/) geben [196]. Bei gutem Ansprechen auf die lokoregionären Therapie kann daher auch dann eine Lebertransplantation erwogen werden, wenn ein Downstaging in die Mailand-Kriterien nicht komplett gelingt. Mit zunehmender Tumorlast steigt außerhalb der UCSF Kriterien jedoch das Risiko für einen Drop-out auf der Warteliste sowie das Rezidivrisiko nach Lebertransplantation. In einer Intention-to-Treat (ITT) Analyse konnte gezeigt werden, dass bei Patienten außerhalb der Mailand-, aber innerhalb der UCSF-Kriterien in 84 % das Downstaging erfolgreich war, außerhalb der UCSF-Kriterien jedoch nur bei 65 % (p < 0,001). Der Erfolg des Downstagings konnte dabei am besten durch die Summe aus größtem Tumorknoten und Anzahl der Läsionen vorausgesagt werden (HR: 0,87; p = 0,04) [143]. Die Rate an Patienten, die ein fortgesetztes Tumoransprechen aufwiesen und schließlich transplantiert wurden, unterschied sich noch deutlicher. So wurden in der UCSF-Gruppe 59 % der Patienten transplantiert, in der Gruppe außerhalb der UCSF-Kriterien nur 14 % (p < 0,001). Während nach Transplantation das 5-Jahres-Überleben in der Gruppe außerhalb der UCSF-Kriterien bei 50 % lag, lag es innerhalb der UCSF-Kriterien bei 79 %, ohne dass dieser Unterschied statistisch signifikant war. Dagegen war das rezidivfreie Überleben außerhalb der UCSF-Kriterien signifikant niedriger (40 % versus 86 %, p < 0,01). Insofern können die UCSF-Kriterien als grober Anhalt dienen, eine exakte Obergrenze für den Versuch eines Downstagings kann aber bisher nicht definiert werden, da neben der alleinigen Tumorgröße und -anzahl auch die Tumorbio- logie mitberücksichtigt werden muss. Während der initiale AFP-Wert in der Auswertung von Sinha et al. keinen signifikanten prädiktiven Wert für ein erfolgreiches Downstaging aufwies [143], stellte es in einer anderen multizentrischen Studie neben der maximalen Tumorgröße und der Tumoranzahl einen signifikanten Einflussfaktor dar [144]. In dieser Studie konnten in Abhängigkeit vom AFP-Wert und der Summe aus Tumoranzahl und Tumorgröße Grenzwerte heraushergerechnet werden, an denen ein Downstaging unwahrscheinlich wird. So ist laut dieser Analyse bei einem AFP-Wert <20 ng/ml ein Downstaging bis zu einer Summe von 12 erfolgversprechend, bei einem AFP-Wert zwischen 201 und 500 ng/ml dagegen nur bis zu einer Summe von 7. Allerdings fehlt in dieser Auswertung im Hinblick auf die Ergebnisse nach Lebertransplantation ein dynamisches Modell, das das Tumoransprechen auf die neoadjuvante Therapie berücksichtigt. Trotzdem konnte so nachgewiesen werden, dass in Abhängigkeit vom AFP-Wert auch außerhalb der UCSF-Kriterien gute Langzeitergebnisse bei entsprechender Patientenselektion erreichbar sind [144].
Dennoch ist der AFP-Verlauf zur Einschätzung der Tumorbiologie hilfreich, da es auch hier Hinweise gibt, dass ein Abfall des AFP-Wert auf < 100 ng oder sogar im Normbereich (<20 ng/ml) mit einer signifikant besseren Prognose nach Transplantation einhergehen [161]. Auch in der multivariaten Analyse blieb ein AFP-Wert > 100 ng/ml ein signifikanter Faktor für ein schlechteres Überleben nach Transplantation (HR: 2,36; p = 0,009).

Ein präinterventioneller AFP-Wert > 1000 ng/ml (HR: 3,3; p < 0,001) und eine Leberzirrhose im Stadium Child B oder C (HR: 1,6; p < 0,001) konnten in einer weiteren Analyse als Risiko-Faktoren für eine geringe Erfolgschance einer Downstaging-Therapie identifiziert werden. Die Chance für ein erfolgreiches Downsizing lag in der Gruppe mit einem initialen AFP-Wert <100 Faktoren bei 91%, bei einem AFP-Wert zwischen 100 – 999 bei 85% und bei einem AFP-Wert ≥1000 immer noch bei 67 % [145], [155]. Auch in einer weiteren Auswertung konnte belegt werden, dass ein AFP-Wert >1000 nicht ein erfolgreiches Downsizing mit nachfolgender Transplantation ausschließt [194]. Insgesamt sollte sich daher bei der Entscheidung zur Transplantation weniger an initialen AFP-Werten als vielmehr an der AFP-Dynamik [197] orientiert werden.

Aufgrund der teilweise widersprüchlichen Datenlage kann zum aktuellen Zeitpunkt keine Empfehlung für eine Obergrenze hinsichtlich Tumorgröße, Anzahl und AFP-Wert ausgesprochen werden. Es zeichnen sich jedoch Faktoren ab, die mit schlechteren Chancen für ein Downsizing bzw. einer erhöhten Rezidiv-Wahrscheinlichkeit nach Transplantation assoziiert sind. In diesen Fällen könnten daher zusätzliche Auswahlkriterien wie ein PET-CT oder eine Tumorbiopsie hilfreich sein.

Daten hierfür sind u.a. aus Lebendspendeprogrammen (ohne Downstaging) verfügbar. So konnte gezeigt werden, dass das Risiko eines Tumorrezidivs nach Transplantation allein durch die Kombination des initialen AFP-Wert und der PET-Positivität und unabhängig von der Tumorgröße und der Tumoranzahl in drei Kategorien eingeteilt werden kann. So fand sich in der Gruppe mit AFP-Wert < 200 ng/ml und negativem PET ein rezidivfreies 5-Jahres-Überleben von 86%, in der intermediären Gruppe mit einem negativen Faktor (AFP > 200 oder PET-Positivität) von 79 % und in der Hochrisikogruppe (AFP > 200 und PET-Positivität) ein rezidivfreies 5-Jahres-Überleben von 19 % (p < 0,001) [198]. Dieser prädiktive Wert einer negativen PET-Untersuchung konnte auch in weiteren Studien bestätigt werden. So fand sich in einer deutschen Auswertung bei Tumoren außerhalb der „up-to-seven“-Kriterien das PET-Verhalten als einziger prädiktiver Parameter. Entsprechend lag außerhalb dieser Kriterien das rezidivfreie Oberleben nach 5 Jahren bei PET negativen Tumoren bei 87 % und bei PET positiven Tumoren bei 19 % [199]. Da nur etwa zwei Drittel aller schlecht differenzierten Tumoren eine PET-Positivität aufweisen, könnte hier eine Tumorbiopsie ebenfalls zur Entscheidungsfindung beitragen. So konnte bei Anwendung der „Extended Toronto Criteria (ETC)“ nach Selektion von G1 und G2 Tumoren durch eine obligate Tumorbiopsie des größten Tumors und Ausschluss von Patienten mit tumorbedingten Symptomen (Gewichtsverlust >10 kg, Änderung des ECOG-Scores ≥1 Punkt innerhalb von 3 Monaten, Performance Status >0) unabhängig von Tumorgröße- und Anzahl ein 5-Jahres-Überleben von 69% erreicht werden [135].

In Einzelfällen kann nach effektiver interventioneller oder operativer Therapie eines makrovaskulär infiltrativen HCC bei hepatischem Tumorrezidiv ohne Gefäßinvasion oder aufgrund Verschlechterung der Leberfunktion die Frage nach einer Lebertransplantation gestellt werden. In einer multizentrischen, retrospektiven Fallsammlung konnte gezeigt werden, dass bei HCC-Patienten mit makrovaskulärer Invasion nach erfolgreicher neoadjuvanter Therapie (komplett Remission des gefäßinvasiven Anteils
nach TACE, TARE oder Resektion) nur bei 11 % der Patienten ein Rezidiv nach Lebertransplantation auftrat, wenn der AFP-Wert vor Transplantation weniger als 10 ng/ml betrug. Daraus resultierte eine 5-Jahres-Überlebensrate von 83% bei einem AFP-Wert < 10 ng/ml vor der Transplantation. Dagegen fand sich bei Patienten mit einem erhöhten AFP-Wert vor Transplantation (≥ 10 ng/ml) eine Rezidivrate von 50 % und ein 5-Jahres-Überleben von nur 33 % [200]. Auch wenn hier noch weitere Ergebnisse abgewartet werden müssen, kann bei dieser Patientengruppe unter der Voraussetzung eines niedrigeren AFP-Werts eine Transplantation in Einzelfällen erwogen werden.

Hinsichtlich der Methode des Downstagings kann aufgrund fehlender direkter Vergleichsstudien wie bei der Bridging-Therapie dargelegt (s.o.) keine eindeutige Empfehlung ausgesprochen werden [194]. Sowohl eine Lokalablation als auch eine chirurgische Resektion, oder transarterielle Verfahren (TACE, TARE) können zum Downstaging effektiv eingesetzt werden [201]. Welches Verfahren dem Patienten angeboten werden soll, soll im interdisziplinären Tumorboard bzw. in der interdisziplinären Transplantationskonferenz festgelegt werden.

3.48 Konsensbasierte Empfehlung

| EK | Für das Downstaging sollen entweder eine Lokalablation, eine Resektion oder ein transarterielles Verfahren (TACE, TARE) eingesetzt werden. |

Starker Konsens

Transarterielle Verfahren (TACE, TARE), ablative Therapien (RFA) und eine Leberresektion sind gleichermaßen effektiv beim Bridging und Downstaging zur Transplantation [172]. Es konnte zwischen den einzelnen Methoden kein Unterschied im Patientenüberleben für die Behandlung von Patienten innerhalb und außerhalb der Mailand-Kriterien nachgewiesen werden. Die unterschiedlichen Studien weisen zudem eine sehr hohe Heterogenität auf, so dass keine klaren Empfehlungen ausgesprochen werden können.

In neueren Studien wurde die Möglichkeit einer TARE zur neoadjuvanten Therapie vor Lebertransplantation untersucht, nachdem frühere Studien bereits die Möglichkeit einer TACE oder Resektion als Therapie zum Bridging beschrieben haben.

In einer randomisierten Studie wurde bei Patienten auf der Warteliste zur Lebertransplantation der Einsatz von TARE bei 17 Patienten mit TACE bei 16 Patienten verglichen. Der mediane Zeitpunkt bis zur Progression war im TARE-Arm zwar deutlich länger, allerdings ohne Einfluss auf das Gesamtüberleben nach Transplantation [202]. In einer weiteren retrospektiven Arbeit mit 22 Patienten lieferte die TARE als Bridging-Therapie vergleichbar gute Ergebnisse zu anderen lokalen Verfahren [203].

Aufgrund der aktuell raschen Entwicklung neuer Substanzen für eine systemische Tumortherapie beim Hepatocellulären Karzinom ist in Zukunft möglicherweise auch ein Downstaging mittels Systemtherapie möglich. Derzeit liegen jedoch nur kleinere Studien oder Kombinationsstudien vor, die keine evidenzbasierte Empfehlung für ein Downstaging mittels Systemtherapie zulassen [204], [205], [206].

Literaturübersicht s. Anhang (Tabelle 14: Übersicht über die Literatur zum Downstaging.)
3.4.1.4 Nachsorge nach Lebertransplantation

<table>
<thead>
<tr>
<th>3.49</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Tumornachsorge sollte nach den allgemeinen Empfehlungen der HCC-Nachsorge (siehe Kapitel Nachsorge 3.4.4) erfolgen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.50</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Außerhalb von Studien sollen Patienten mit HCC nach Lebertransplantation nicht adjuvant behandelt werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die Vermeidung bzw. die frühzeitige Diagnose eines möglichen Tumorrezidivs stehen bei der Nachsorge nach Lebertransplantation aufgrund eines HCC im Vordergrund. Hin-sichtlich der Nachsorgeuntersuchungen weichen die Empfehlungen nach Lebertransplantation (207) nicht von denen nach Leberresektion ab, sodass auf die oben genannten Empfehlungen verwiesen werden kann.

Für eine adjuvante Tumorthherapie gibt es bisher keine evidenzbasierte Grundlage, so dass diese außerhalb von Studien nicht erfolgen sollte (208), s. auch Kapitel Systemtherapie S.86.

Da die Immunsuppression das Tumorrezidiv als wesentlicher Risikofaktor begünstigt, sollte eine Reduktion der Immunsuppression und ggf. auch Modifikationen der applizierten Medikamente individuell erwogen werden. Verfügbar klinische Daten weisen darauf hin, dass eine Reduktion der prokarzinogenen Calcineurininhibitoren (CNI) und eine Vermeidung von T-Zell-depletierende Substanzen (ATG, Thymoglobulin) das Rezidivrisiko möglicherweise verringern kann. So existieren mehrere retrospektive Analysen, die ein erhöhtes Rezidivrisiko bei hohem postoperativen Spiegel an CNI zeigen (209), (210), (211), (212). Daher sollte der Spiegel der CNI (Tacrolimus, Cyclosporin A) soweit wie möglich reduziert und die CNI durch andere Substanzen ohne prokarzinogene Wirkung ergänzt bzw. im Langzeitverlauf ggf. auch ersetzt werden. Hierzu gehören neben den mTOR-Inhibitoren die Antimetabolite (Mycophenolat, Azathioprin) und Interleukin-2-Rezepterantagonisten (213).

Für die Verwendung von mTOR Inhibitoren in Kombination mit niedrig dosierten CNI liegt bisher die beste Evidenz für eine Reduktion des Rezidivrisikos in Form von mehreren Metaanalysen (214), (215) sowie prospektiv randomisierten Studien vor. Drei randomisierte Studien haben primär den nephroprotectiven Effekt von mTOR-Inhibitoren untersucht, aber im Rahmen von sekundären Endpunkten auch eine niedrigere Inzidenz von HCC Rezidiven belegt (216), (217), (218). In der prospektiv randomisierten SiVER-Studie wurden 500 HCC-Patienten innerhalb und außerhalb der Mailand-Kriterien ent-weder mit einer mTOR-freien Immunsuppression behandelt oder mit einer Kombination aus Sirolimus und CNI. Im Langzeitverlauf fand sich in der Sirolimus-Gruppe ein leicht erhöhtes rezidivfreies Überleben nach 8 Jahren (70% vs. 65%, p = 0,28) und auch ein tendenziell, aber nicht statistisch signifikant besseres Gesamtüberleben (75% vs. 68%, p = 0,21) (218), (219). Dabei zeigte sich aber bis 3 Jahre nach der Transplantation ein
signifikant höheres rezidivfreies Überleben und bis 5 Jahre nach Transplantation ein höheres Gesamtüberleben, wobei der Effekt der Sirolimus-basierten Immunsuppression bei Patienten innerhalb der Mailand-Kriterien und bei jüngeren Patienten (< 60 Jahre) stärker ausgeprägt war. Insgesamt sprechen diese Daten somit für eine Verzögerung, wenn auch nicht Verhinderung eines Tumorrezidivs bei Sirolimus-basierter Immunsuppression. In Kombination mit den o.g. Studien zur Everolimus-basierten Immunsuppression sollte daher die Verwendung eines mTOR Inhibitors zur Reduktion der CNI-Dosis erwogen werden.

3.4.1.2 Resektion

3.4.1.2.1 Resektion beim Hepatozellulären Karzinom ohne Leberzirrhose

<table>
<thead>
<tr>
<th>3.51</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Resektion eines HCC ohne Leberzirrhose soll erfolgen, wenn eine komplette Resektion (R0-Resektion) möglich ist.</td>
<td></td>
</tr>
</tbody>
</table>

Größe und Anzahl der Tumoren sowie die Infiltration großer Gefäße scheinen einen negativen prognostischen Einfluss zu haben [227], stellen jedoch keine Kontraindikation zur Resektion dar. Sichere Daten zur Frage, ob die Resektion in anatomischen Grenzen (in Segment- oder Subsegmentgrenzen) vorgenommen werden sollte, liegen nicht vor [228], [229].

3.4.1.2.2 Nachsorge beim Hepatozellulären Karzinom ohne Leberzirrhose

<table>
<thead>
<tr>
<th>3.52</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Nach Resektion eines HCC ohne Leberzirrhose sollte eine regelmäßige Nachsorge über 5 Jahre erfolgen.</td>
<td></td>
</tr>
</tbody>
</table>

Nach Resektion eines HCCs in einer nicht-zirrhotischen Leber tritt häufig ein Rezidiv auf. Das rezidivfreie 1- bzw. 5-Jahres-Überleben liegt bei 71% bzw. 35% [230], [231].
Eine pragmatische Empfehlung zur Nachsorge beinhaltet 3-monatige bildgebende Kontrollen im ersten Jahr, 6-monatige im zweiten und jährliche ab dem dritten Jahr bis zu 5 Jahren nach Resektion. Durch Resektion eines HCC Rezidivs kann, sofern technisch möglich, eine 5-Jahres-Überlebensrate von 67% erreicht werden [231], [232]. Auch bei solitären metachronen Fernmetastasen (z.B. Lungenmetastasen, Nebennierenmetastasen) kann im Einzelfall eine Resektion erfolgen [233].

3.4.1.2.3 Resektion beim Hepatozellulären Karzinom mit Leberzirrhose

<table>
<thead>
<tr>
<th>3.53</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei einem singulären HCC Knoten in Leberzirrhose mit funktioneller Resektabilität sollte eine Leberresektion erfolgen. Dies trifft insbesondere für HCC Knoten > 3 cm zu.</td>
<td></td>
</tr>
</tbody>
</table>

Der ideale Patient für eine Resektion mit einem HCC in Zirrhose hat einen kleinen einzelnen HCC-Knoten in peripherer Lage und eine gut erhaltene Leberfunktion mit einer Thrombozytenzahl > 100 000/ml, entsprechend dem „very early stage (0-A)” der „Barcelona Clinic Liver Cancer (BCLC)” Klassifikation [5]. Auch in aktuellen Studien hat sich bestätigt, dass in dieser Patientengruppe die besten Kurz- und Langzeitergebnisse erreicht werden können, so wurde in der BRIDGE-Studie, in der 10 135 Patienten mit einem HCC ausgewertet wurden, eine 3- und 5-Jahres-Überlebensrate von 74% und 65% beschrieben [239]. In der gleichen Studie wurde berichtet, dass nur 80% der Patienten mit „idealen Bedingungen” operiert und 20% anderen Therapieformen mit deutlich schlechteren 3- und 5-Jahres-Überlebensraten zugeführt wurden [239].

Bei einem singulären HCC Knoten jeglicher Größe sollte eine Leberresektion durchgeführt werden. Bei tief und zentral liegenden Tumoren < 3 cm kann eine Ablation (RFA oder Mikrowellenablation [MWA]) wegen vergleichbarer Langzeitergebnisse und niedriger postinterventioneller Leberfunktionsstörungen von Vorteil sein.
Bei multiplen HCC-Knoten in Leberzirrhose innerhalb der Mailand-Kriterien sollte die Möglichkeit einer Leberresektion geprüft werden. Multiple HCC-Knoten oder größere HCC-Knoten in Leberzirrhose außerhalb der Mailand-Kriterien oder außerhalb des Stadiums 0-A der BCLC-Klassifikation stellen aufgrund der neuen Daten per se keine Kontraindikation zur Resektion dar, sofern diese technisch durchführbar ist und ausreichend funktionelles Lebergewebe erhalten werden kann.

In den letzten 10 Jahren haben sich die Früh- und Langzeit-Ergebnisse nach Resektionen beim HCC in Zirrhose bei Patienten aus den Stadien „Intermediate Stage (B)“ oder „Advanced Stage (C)“ der BCLC Klassifikation und außerhalb der Mailand-Kriterien deutlich verbessert [239], [240], [241], [242], [243], [244]. Gründe hierfür liegen in der genaueren präoperativen Operationsplanung basierend auf der verbesserten radiologischen Bildgebung, in der Weiterentwicklung chirurgischer Techniken inklusive der Einführung minimalinvasiver Methoden, in der Optimierung des intraoperativen Vena cava inferior Druck Managements und der postoperativen Therapie.

Die Daten sprechen dafür, dass in Einzelfällen Patienten mit einem HCC im Stadium B oder C der BCLC-Klassifikation oder Patienten außerhalb der Mailand-Kriterien für eine Leberresektion in Betracht kommen. Mehrere Autoren sprechen sich eindeutig für die Überarbeitung des BCLC-Algorithmus aus [239], [240], [241], [242], [243], [244]. Torzilli et al. konnten eine 30-Tages Mortalitätsrate für die BCLC-Stadien B und C von 3,1% bzw. 2,5% und eine 90-Tages Mortalitätsrate von 3,0% bzw. 3,0% beobachten [241]. Das 1-, 3- und 5-Jahres-Überleben lag für Patienten im BCLC B-Stadium bei 88%, 71% und 57% und im BCLC C-Stadium bei 76%, 49% und 38% [241]. Untersuchungen zum Rezidivmuster nach Resektionen zeigten keinen signifikanten Unterschied zwischen Patienten, die im Stadium 0-A nach der BCLC-Klassifikation operiert wurden gegenüber Patienten im Stadium B oder C [244]. Die Rezidive waren in beiden Stadien am häufigsten intrahepatisch und lagen im Stadium 0-A bei 74,3% und im Stadium B/C bei 70,8% [244].

Chirurgisch-technisch gibt es zwei Möglichkeiten der Leberresektion, nämlich die anatomische in den Sub- bzw. Segmentgrenzen oder die parenchymsparende, atypische Resektion. Durch die anatomische Resektion mit gleichzeitiger Entfernung von über das portalvenöse Stromgebiet disseminierten Tumorzellformationen soll das onkologische Ergebnis verbessert werden. Vor dem Hintergrund der nach wie vor sehr hohen lokalen Rezidivrate nach Resektion, von bis zu 50% in 5 Jahren in einigen Patientenkollektiven...
3.4 Operative und interventionelle Therapieverfahren

[245], erscheint dieser Ansatz vielversprechend. Ein onkologischer Vorteil für die anatomische Resektion konnte bis jetzt nicht eindeutig gezeigt werden [228]. Es liegt nur eine doppelt-blind randomisierte, prospektive Studie zu dieser Frage vor [246]. Feng et al. konnten an 105 Patienten zeigen, dass das Rezidiv nach anatomischer Resektion zwar später auftrat, aber kein signifikanter Unterschied im rezidivfreien Überleben bestand [246]. Die Frage, in welcher Form die Resektion, anatomisch oder atypisch, durchgeführt werden sollte, kann deswegen abschließend nicht beantwortet werden [228]. Eine Leberresektion beim HCC in Leberzirrhose mit Tumorinfiltration größerer Gefäße sollte dagegen nur in Ausnahmefällen erfolgen.

Die Anzahl minimalinvasiver Leberresektionen nimmt seit 10 Jahren stetig zu [247], [248]. Die Resektion des HCC in einer Leberzirrhose kann bei entsprechender Eignung des Operationsteams und entsprechender Ausrüstung minimalinvasiv (inklusive Roboter Einsatz) durchgeführt werden [249], [250], [251]. Besonders bei Patienten vor einer geplanten Lebertransplantation ist die minimalinvasive Leberresektion für die Durchführung der Transplantation von Vorteil [252].

<table>
<thead>
<tr>
<th>3.56</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
<td>Eine neoadjuvante oder adjuvante Therapie bei Resektion soll nur im Rahmen von Studien erfolgen.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>2</td>
<td>[253]; [254]; [255]; [256]; [257]</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.1.2.4 Nachsorge nach Resektion beim Hepatozellulären Karzinom mit Leberzirrhose

<table>
<thead>
<tr>
<th>3.57</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
<td>Nach Leberresektion beim HCC in Zirrhose soll eine regelmäßige Nachsorge erfolgen.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>2</td>
<td>[258]; [259]; [260]; [261]; [262]; [263]</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eine pragmatische Empfehlung zur Nachsorge beinhaltet 3-monatige bildgebende Kontrollen im ersten Jahr und 6-monatige im zweiten Jahr. Ab dem dritten Jahr kann die Nachsorge im Rahmen der Vorsorge bei Leberzirrhose erfolgen. Das Rezidivrisiko in der zirrhotischen Leber ist von mehreren Faktoren abhängig, u.a. der Genese der

3.4.2 Interventionelle Therapieverfahren

3.4.2.1 Perkutane Ablation

<table>
<thead>
<tr>
<th>3.58</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei Patienten mit HCC bis 3 cm sind die Resektion und die Ablation äquivalente Verfahren.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.59</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad A</td>
<td>Patienten mit HCC kleiner 3 cm in für die Resektion ungünstiger Lokalisation oder mit eingeschränkter Leberfunktion soll primär eine Thermoablation des Tumors angeboten werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

In der retrospektiven Kohortenstudie von Nishikawa et al. wurden Patienten mit solitärem HCC < 3 cm mit RFA (n = 35) oder chirurgischer Resektion (n = 19) behandelt. Die Ergebnisse zeigen keine signifikanten Unterschiede zwischen beiden Gruppen in Bezug auf das Gesamtüberleben und rezidivfreiem Überleben [268].

Uhlig et al. haben 2019 die Effektivität und das Outcome (u.a. Nachbehandlung) der RFA und der chirurgischen Resektion bei Patienten mit HCC verglichen. Die 2004-2015 United States National Cancer Database von Patienten mit HCC wurde dafür abgefragt, welche Patienten mit RFA oder chirurgischer Resektion behandelt wurden. Insgesamt wurden 18 296 Patienten einbezogen (RFA, n = 8211; chirurgische Resektion, n = 10 085). Davon wiesen 371 Patienten eine geringgradige Zirrhose oder keine Leberzirrhose (Ishak score 0–4) auf. Insgesamt wurde 539 Patienten eine geringgradige Zirrhose oder keine Leberzirrhose (Ishak score 0–4) auf. Die Dauer des Krankenhausaufenthaltes, ungeplante Reintervention und Gesamtüberleben (OS) wurden in der angepassten Kohorte mittels multivariabler Regressionsmodelle verglichen. Die RFA war häufiger bei jungen männlichen Männern mit hohem Grad an Leberfibrose, hohem Bilirubinspiegel, hohem International Normalized Ratio (INR) und multifokalem HCC. Die Resektion war signifikant häufiger bei Patienten mit privater Versicherung, hohem Einkommen, hoher Malignität und Stadium, und größerem HCC. Die Ergebnisse der Nachbehandlung waren für die RFA besser als die Resektion in Bezug auf die Dauer des Krankenhausaufenthaltes (Median 1 vs. 5 Tage, p < 0,001) und 30-/90 Tage Mortalität (0 % vs. 4,6 % / 8 %, p < 0,001). Das Gesamtüberleben war vergleichbar für RFA und Resektion bei schwerer Leberzirrhose.
Leberfibrose/Zirrhose (5 Jahre OS 37,3 % vs. 39,4 %, p = 0,07). Das Gesamtüberleben in der gesamten Kohorte war für die chirurgische Resektion überlegen (5 Jahre OS 29,9 % vs. 45,7 %, p < 0,01) [269].

Eine Vielzahl weiterer Studien hat die Vergleichbarkeit beider Verfahren bei kleinen Tumoren gezeigt [270], [271], [272].

3.60 Konsensbasierte Empfehlung geprüft 2022

<table>
<thead>
<tr>
<th>EK</th>
<th>Die perkutane Ablation des HCC soll mittels Radiofrequenz-Ablation (RFA) oder Mikrowellen-Ablation (MWA) durchgeführt werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die RFA und die MWA können über einen perkutanen, laparoskopischen oder offenen Zugang erfolgen. Der perkutane Zugangsweg ist die häufigste Vorgehensweise. Sie stellt den am wenigsten invasiven Zugang für die Durchführung der RFA dar und sollte insbesondere bei Patienten, die für eine offene Tumorresektion nicht geeignet sind oder ein erhöhtes Operationsrisiko (z.B. aufgrund einer fortgeschrittenen Leberzirrhose) aufweisen, grundsätzlich in Betracht gezogen werden. Die Planung, Positionierung und Kontrolle des RF-Applikators oder der MW-Antenne muss für den perkutanen Zugang unter Bildgebung erfolgen, mit CT, US oder MR-Bildgebung. Vorteile der perkutanen RFA gegenüber einem laparoskopischen oder offenen Zugang umfassen:

- Reduktion von Morbidität
- Reduzierte postoperative Schmerzsymptomatik
- Kürzerer Krankenhausaufenthalt
- Durchführbarkeit häufiger in Sedierung als in Allgemeinanästhesie
- Kostenreduktion

Für die Zielführung sind multiplanare Echtzeitverfahren mit interaktiven Funktionalitäten von Vorteil, welche sowohl eine genaue Abgrenzung des Tumors als auch eine umfassende Visualisierung der angrenzenden Strukturen ermöglichen. Ultraschall, CT und MRT kommen zum Einsatz. Viele Faktoren beeinflussen letztlich die Wahl des bildgebenden Verfahrens für die Platzierung der RFA-Sonden oder MW-Antenne:

- Tumorvisibilität,
- Persönliche Präferenz und Erfahrung des Operateurs,
- Verfügbarkeit: beinhaltet sowohl Standardmodalitäten als auch dedizierte Instrumente für die Echtzeitbildgebung (z.B. CT-Fluoroskopie) und offene MRT-Geräte mit interventionellem Interface.

Für die Ablation kann die Steuerung der Instrumente während der Instrumentenplatzierung mit US, CT oder MRT durchgeführt werden. Die eindeutigen Vorteile der MR-Bildgebung liegen in dem besseren Gewebekontrast, das Monitoring und die Kontrolle der induzierten Koagulation. Für ein exaktes Monitoring, für die exakte Lokalisation relevanter Nachbarstrukturen während der Ablation sowie für die Kontrolle hat der US seine Limitationen und kann nicht empfohlen werden.

Die perkutane Ethanolinjektion (PEI/PAI), die irreversible Elektroporation (IRE), sowie die Laser- und Kryo-Ablation sollen nicht zur Therapie von HCCs genutzt werden, die für eine Resektion oder Thermoablation mit RFA/MWA geeignet sind. Die Anzahl der
klinischen Studien zur IRE, Laser und Kryoablation ist aktuell noch sehr gering. Die IRE hat durch den geringen thermischen Effekt einen potenziellen Vorteil für die Therapie von HCC nah zu den Gallenwegen. Dennoch liegen aktuell wenige Daten mit suffizienter Patientenzahl oder langen Überlebensdaten vor. Die lokale Rezidivrate nach IRE ist für HCC >2,5 cm deutlich höher als nach Behandlung mit RFA, MWA oder Resektion [273], [274], [275].

Die PEI sollte nicht mehr eingesetzt werden. Gemäß der “European Association for the Study of the Liver” aus dem Jahr 2001 wurde die PEI als Standard zur Therapie inoperabler Patienten bzw. irresektabler HCCs empfohlen [276]. In der Folge erschienen mehrere randomisierte kontrollierte Studien (RCTs) zum Vergleich von RFA und PEI zur Therapie kleiner HCCs [277], [278], [279], [280], [281]. Insgesamt war in den Studien die RFA der PEI deutlich überlegen. Es zeigte sich aber auch, dass die ausreichende lokale Tumorkontrolle vom Tumordurchmesser abhängig ist. So steigt die locale Rezidivrate von 4% im ersten Jahr bei HCCs kleiner 2 cm auf 13% bei HCCs zwischen 3-4 cm [278]. Lencioni et al. zeigten in einer randomisierten, kontrollierten Studie, dass die RFA (n = 52) der PEI (n = 50) bzgl. des rezidivfreien Überlebens überlegen ist [274]. Im Vergleich zur PEI generiert die RFA besser reproduzierbare und vorhersagbare Koagulationsnekrosen. Zusammenfassend benötigt die RFA deutlich weniger Interventionen zur kompletten Tumorablösung als die PEI [273].

<table>
<thead>
<tr>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad A</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence 2</td>
<td>[282]; [283]; [284]</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Wie schon mehrfach histopathologisch nachgewiesen, so konnte auch Fukutomi et al. eine deutliche weitere periläsionale Tumorzellaussaat bei HCC > 3 cm und < 5 cm im Vergleich zu Tumoren ≤ 3 cm nachweisen [285]. Um für diese Situation ein größeres Ablationsareal einschließlich größeren Sicherheitsabstands zu erzielen, soll der Effekt der Thermoablation durch eine vorherige TACE verstärkt werden. Dabei konnten bisher über 200 Studien den synergistischen Effekt beider ablätter Verfahren bestätigen (Auswahl der letzten Jahre s. Anhang Tabelle: TACE plus Thermoablation bis ca. 5 cm und > 5 cm bis <7 cm).

Die partikelverstärkte TACE führt dabei zu einer verminderten oder vollständigen Devaskularisation des Tumors und seiner Umgebung, was eine zeitnahe Thermoablation in ihrer Wirkung deutlich verstärkt. Hierdurch lassen sich Koagulationszonen sogar bis 7 cm Durchmesser erzielen, sodass bei irresektablen Patienten mit CHILD-A- und CHILD-B-Zirrhose mit adäquater Leberfunktion und nur gering- oder mäßiggradiger portaler
Hypertension (Bilirubin < 2 mg/dl; keine Splenomegalie, Thrombozyten > 100.000) in Einzelfällen eine Thermoablation für die Behandlung von HCC > 5 cm und < 7 cm durchgeführt werden kann. Mit verschiedenen Behandlungsprotokollen sind so vergleichbare 5-Jahres-Überlebensraten bis über 70 % erreicht worden (s. Anhang Tabelle: Tabelle 12).

Synergistische Wirkungen berichteten auch Smolock et al. über die Kombination TACE und MWA für die Therapie von HCC bis 5cm [286]. Patienten mit HCC zwischen 3 und 5 cm, die mit TACE-Monotherapie oder Kombination TACE + MWA an einer einzigen Institution zwischen 2007 und 2016 behandelt wurden, wurden retrospektiv untersucht. Das Ansprechen auf die Behandlung wurde tumorweise anhand von mRECIST-Kriterien bewertet, wobei das primäre Ergebnis die lokale Tumorprogression (LTP) war. Im Vergleich zur TACE-Monotherapie zeigte die Kombinationstherapie TACE + MWA eine niedrigere Rate von LTP (34,8 % vs. 62,5 %, p = 0,11) als auch eine höhere vollständige Ansprechrate (65,2 % vs. 37,5 %; p = 0,12). Die Zeit bis zum LTP (22,3 Monate vs. 4,2 Monate; p = 0,001) war in der TACE + MWA-Gruppe signifikant länger als bei der TACE-Monotherapie. Die Kombinationstherapie mit TACE und Mikrowellenablation verbessert die lokale Kontrolle und erhöht die Zeit bis zum LTP für 3-5 cm HCC. Der optimale Zeitabstand zwischen Chemoembolisation und Thermoablation sollte 1-2 Wochen betragen. Auch kürzere Intervalle bis hin zur einzeitigen Kombinationstherapie wurden als sicher und effektiv beschrieben [287]. Der Patient sollte nach Durchführung der Chemoembolisation im interdisziplinären Tumorboard wieder vorgestellt werden.

Transarterielle Chemoembolisation (TACE)

<table>
<thead>
<tr>
<th>3.62</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
<td>Die TACE soll Patienten mit HCC im intermediären Stadium angeboten werden, wenn keine kurativen Therapieoptionen vorliegen.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>2</td>
<td>[288]; [289]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.63</th>
<th>Evidenzbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>2</td>
<td>Die TACE setzt eine erhaltene Leberfunktion voraus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[290]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>
3.4 Operative und interventionelle Therapieverfahren

<table>
<thead>
<tr>
<th>3.64</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die TACE soll dem Vaskularisationsmuster der Tumorherde angepasst werden und so selektiv wie möglich erfolgen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.65</th>
<th>Evidenzbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence 2</td>
<td>Konventionelle TACE und Drug-eluting-TACE können als gleichwertige Verfahren angesehen werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

[289]; [290]

<table>
<thead>
<tr>
<th>3.66</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die TACE sollte mehrfach durchgeführt werden, solange ein Ansprechen hierauf nachweisbar ist (CR, PR nach mRECIST) und behandelbare hypervaskularisierte Tumoranteile verbleiben.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

CR: complete response; PR: partial response

<table>
<thead>
<tr>
<th>3.67</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Indikation zur Fortführung der TACE soll nach zwei Behandlungszyklen im Tumorboard überprüft werden.</td>
<td>Konsens</td>
</tr>
</tbody>
</table>

Die TACE ist indiziert bei Patienten im BCLC B-Stadium mit multinodulärem oder großem HCC, wenn keine potenziell kurativen Therapieoptionen vorliegen und nach Ausschluss von Kontraindikationen. Kontraindikationen sind:

- fortgeschrittenes Erkrankungsstadium mit tumorbedingten Symptomen und Reduktion des Allgemeinzustandes (ECOG >/=2)
- dekompensierte Lebererkrankung (Child-Pugh C) oder hohe Tumorlast und reduzierte Leberfunktion (Child-Pugh B >7)
- gesicherte prognoserelevante extrahepatische Metastasierung
- Komplette Pfortaderthrombose oder komplette hepatofugale Pfortaderperfusion
- hypovaskularisiertes HCC in CT oder MRT
- relative Kontraindikation: makroskopische Tumorinvasion der Vena portae, des rechten/linken großen portalen Hauptstammes oder großer Lebervenen in kontrastangereinigtem CT, MRT oder US
Ebenso ist die TACE eine Therapieoption für Patienten in den BCLC-Stadien 0 und A, sofern potenziell kurative Verfahren wie Ablation und Resektion nicht möglich sind. Ggf. kann auch eine Kombination der TACE mit der Ablation erfolgen. Die TACE ist eine mögliche Therapieoption für Patienten, die nach adäquater Aufklärung andere Therapieoptionen nicht wünschen.

Retrospektive Analysen ergaben Hinweise darauf, dass die Ergebnisse der TACE im Hinblick auf Gesamtüberleben und progressionsfreies Überleben verbessert werden können, wenn bei der Indikationsstellung innerhalb der Kriterien des BCLC B-Stadiums eine weitere Differenzierung vorgenommen wird. Hierbei sind insbesondere die Größe und Anzahl der Tumorherde sowie der Schweregrad der Leberfunktionsstörung von Bedeutung.

Die Vaskularisation der Tumorherde spielt eine wichtige Rolle im Hinblick auf die Ergebnisse der TACE. Eine arterielle Hypervaskularisation, eine selektive arterielle Tumorversorgung über einzelne Feeders und Pseudoenkapsulation lassen bessere Ergebnisse erwarten, als dies bei gering vaskularisierten und diffus arteriell versorgten Tumoren der Fall ist. Auch Tumorherde an der „Wasserscheide“ zwischen den arteriellen Versorgungsterritorien stellen erhöhte Anforderungen an die interventionelle Behandlungs technik. Dies beinhaltet eine hochwertige intraprozedurale Bildgebung, ggf. auch mit Cone Beam CT unter arterieller Perfusion zur Klärung der selektiven Vaskularisation.

Grundsätzlich besteht im Rahmen der TACE das Risiko einer regionalen Lebernekrose, insbesondere wenn in diesem Gebiet eine portale Perfusion fehlt. Der Lebernekrose kann eine funktionelle Dekompensation folgen. Liegen aber nur segmentale portale Tumorinvasionen vor und bestehen bezüglich der selektiven arteriellen Devaskularisation günstige Voraussetzungen mit segmentaler oder subsegmentaler Durchführung der TACE, kann diese effizient und nebenwirkungsarm erfolgen.

Vor, während und nach TACE soll eine adaptierte supportive Therapie durchgeführt werden. Hierzu sind eine ausreichende Analgesie, Antiemese, Hydratation, ggf. Antibiose erforderlich.

Zur TACE sollten Anthrazykline (Doxorubicin, Epirubicin) oder Platinderivate verwendet werden [291]. Auch die Verwendung von Mitomycin C ist möglich. Bei Verwendung von Doxorubicin darf aufgrund kardiotoxischer Nebeneffekte eine kumulative Dosis von 450 mg/m² nicht überschritten werden.

3.4 Operative und interventionelle Therapieverfahren

3.4.2.3 Transarterielle Radioembolisation (TARE)

<table>
<thead>
<tr>
<th>3.68</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad 0</td>
<td>Die TARE kann nach Beschluss des Tumorboards bei Patienten mit erhaltener Leberfunktion im intermediären HCC-Stadium anstelle einer TACE eingesetzt werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence 2</td>
<td>[293]; [294]; [295]; [296]</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Möglichkeit zur Durchführung einer transarteriellen Therapie bei HCC ist von der Perfusion, der Anzahl und Größe der HCC-Herde abhängig. Prinzipiell gibt es aktuell einige Studien, die eine Vergleichbarkeit der TARE mit der TACE belegen – jedoch keine Überlegenheit eines der beiden Verfahren herausarbeiten konnten [301], [302].

In einer Phase-II-Studie (Patientenzahl für intraarterielle Therapie = 54), in der die Chemoembolisation (cTACE, n = 21) mit der TARE (n = 24) verglichen wurde, war die mediane Zeit bis zur Progression (TTP) in der TARE Gruppe (TTP > 26 Monate) signifikant besser, als in der cTACE Gruppe (TTP 6,8 Monate; p = 0,0012), das mediane Überleben, zensierte bei Lebertransplantation, lag jedoch in der TARE-Gruppe bei 18,6 Monaten und in der TACE-Gruppe bei 17,7 Monaten (p = 0,99) [202]. In einer 2017 publizierten Metaanalyse, welche insgesamt 3 randomisiert kontrollierte Studien (konventionelle TACE vs. TARE bei HCC) [6-8] inkludierte (n= 215 [110 TARE, 105 TACE] [302], konnte weder ein Unterschied im Überleben (HR: 0,92, p = 0,68) noch im Hinblick auf ein Auftreten schwerwiegender, unerwünschter Ereignisse (HR: 0,45, p = 0,48) festgestellt werden [302]. Eine weitere, von Pitton et al. publizierte Studie, die randomisiert DEB-TACE mit TARE verglichen hat, konnte ebenfalls keinen statistisch signifikanten Effekt im Überleben (n=24 [12 DEB-TACE, 12 TARE] HR: 1,05; p = 0,93) nachweisen [303].

Lobo et al. [304] untersuchte die verfügbare Evidenz zum Vergleich der klinischen Ergebnisse nach TARE und TACE für inopera bene HCCs (n = 553 [269 TARE, 284 TACE], wobei kein Unterschied im Überleben von bis zu 4 Jahren zwischen den beiden Gruppen (HR: 1,06; p = 0,567) nachweisbar war. Bei vergleichbaren Überlebensdaten wurde von Salem et al. [305] jedoch für TARE im Vergleich zu TACE eine höhere Lebensqualität und von Kolligs et al. [301] die Vergleichbarkeit einer single session TARE mit 3,4 TACE bei den eingeschlossenen HCC-Patienten beschrieben.

In einer retrospektiven Multicenter-Analyse an 325 HCC Patienten zeigten Sangro et al., dass therapiaive und vortherapierte (OP, TACE oder RFA) HCC-Patienten, nach der TARE vergleichbare Überlebenszeiten aufzeigen: BCLC A: 22,1 (15,1-45,9) vs. 30,9 Monate (19,6-46,8); p = 0,243; BCLC B: 18,4 (11,2-19,4) vs. 22,8 Monate (10,9-34,2); p = 0,815; und BCLC C: 8,8 (7,1-10,8) vs. 10,8 Monate (7,7-12,6); p = 0,976 [306]. Des Weiteren, konnte Jonson et al. [307] in seiner retrospektiven Auswertung von 40 Patienten belegen, dass bei Patienten, bei denen sich trotz TACE ein Progress einstellte oder eine Pfortaderthrombose entstand, die TARE sicher und mit gutem Erfolg durchgeführt werden konnte (41% complete response, 19 % partial response, 7 % stable disease und 33 % progressive disease). Das mediane progressionsfreie Überleben und das Gesamtüberleben lagen bei 90 und 257 Tagen.
Mehrere Studien belegen die Wirksamkeit, sowie die Sicherheit der TARE bei Patienten mit Pfortader(teil-)thromosen [308], [309], [310], [311], [312]. Allen Studien gemeinsam war, dass Patienten – unabhängig vom BCLC-Stadium – ein signifikant schlechteres Überleben bei Vorliegen einer Pfortaderthrombose hatten. Allerdings kann die transarterielle Therapie ohne schwere Nebenwirkungen durchgeführt werden. Ein Vergleich zwischen unterschiedlichen Modalitäten der Anwendung einer Radiotherapie bei Patienten mit Pfortaderthrombose erfolgte im Rahmen einer Metaanalyse mit 2513 Patienten. Diese Analyse konnte zeigen, dass sich die unterschiedlichen Strahlenbehandlungen statisch nicht signifikant voneinander im gepoolten 1-Jahres-Überleben unterschieden: 3-dimensionale konforme Radiotherapie (3DCRT) 43,8 %, TARE 46,5 % und stereotaktischen Radiotherapie (SBRT) 48,5 % [313].

Neuere Studien weisen darauf hin, dass eine personalisierte Dosimetrie das therapeutische Ergebnis einer TARE verbessert [300][297]. Eine randomisierte kontrollierte Studie bei lokal fortgeschrittenem hepatozellulärem Karzinom (mindestens eine Läsion > 7cm) zeigte ein OS von 26,7 Monaten bei personalisierter Dosimetrie (n=31) vs. 10,7 Monaten bei Standarddosimetrie (n=29) (p<0.01) [298]. Eine weitere retrospektive, multizentrische, einarmige Studie (n=162) zeigte einen Vorteil bei singulären Tumoren, die selektiv behandelt wurden, mit einer ORR von 88,3% und einem 3-Jahres-Gesamtüberleben von 86,6% [299]. Von diesen Studien wird die Durchführung der TARE als personalisierter Behandlungsansatz mit klaren Zieldosierungen empfohlen.

Ergänzende Literatur S. Anhang (Tabelle 24: Literaturübersicht zur TARE, S. 168)

In der SIRveNIB-Studie wurden Patienten mit BCLC B oder C, ECOG PS 0–1, Child-Pugh ≤ B7 und HCC-Läsionen ≥ 10 mm ohne Möglichkeit einer Resektion, Lebertransplantation oder lokal ablatter Therapie eingeschlossen [315]. Die Studie wurde an 15 Zentren im asiatisch-pazifischen Raum mit insgesamt 360 Patienten durchgeführt. Im TARE-Arm erhielten 52 von 182 Patienten keine TARE. Der Unterschied im medianen Gesamtüberleben war statistisch nicht signifikant und betrug in der TARE-Gruppe 8,8 Monate und in der Sorafenib-Gruppe 10,0 Monate. Weniger Patienten in der TARE-Gruppe zeigten Nebenwirkungen Grad 3 oder höher (28% vs. 51%). Ein erheblicher „cross-over“ von Sorafenib in der TARE-Gruppe wie bei der SARAH-Studie wurde für SIRveNIB nicht
berichtet, allerdings fehlen bei ca. 50% der Patienten in jedem Arm Angaben über eine mögliche Folgetherapie.

3.4.3 Stereotaxie

<table>
<thead>
<tr>
<th>3.69</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Hochpräzisionsradiotherapie (Stereotactic Body Radiotherapy; SBRT) kann in Betracht gezogen werden, wenn andere lokale Therapieverfahren nicht möglich sind (z.B. hohe Wahrscheinlichkeit für ein Therapieversagen, eingeschränkte Leberfunktion, technische Hindernisse).</td>
<td></td>
</tr>
</tbody>
</table>

Vor der Einführung einer verbesserten Konformalität und Bildführung der Radiotherapie (IGRT) war die Beststrahlung primärer Lebertumoren kompromittiert durch zu große Behandlungsvolumina, die zu unzureichenden Bestrahlungsdosen für eine Lokalkontrolle führten. Moderne Strahlentherapietechniken sind vor allem die Körperstereotaxie (Stereotactic Body Radiotherapy, SBRT) und darüber hinaus die Protonentherapie sowie die interstitielle Brachytherapie. Die SBRT ist gekennzeichnet durch Hypofraktionierung (3-12 Fraktionen) in Kombination mit einer hohen Präzision durch spezielle Lagerungstechniken in Verbindung mit Strategien für die Kontrolle der Atembeweglichkeit (motion management) und IGRT. Diese Strategien sind notwendig zur Vermeidung einer strahleninduzierten Lebererkrankung (RILD) und von Nebenwirkungen an kritischen Nachbarorganen wie Magen, Duodenum und Kolon. Die inzwischen vorliegenden Daten haben zu einer Aufnahme der Radiotherapie in die Leitlinien der European Society for Medical Oncology (ESMO), der Asian-Pacific Association for the Study of the Liver (APASL) und der Korean Liver Cancer Association geführt [30, 316, 317].

Eine Reihe von prospektiven Studien zur SBRT von HCC berichtete Lokalkontrollraten nach einem Jahr von 75-95 % und nach 2 Jahren von 64-95 % sowie Gesamtoberlebensraten nach einem Jahr von 36-81 % und nach 2 Jahren von 40-81 % [318, 319, 320, 321, 322, 323, 324, 325]. In diesen Studien hatte die Mehrzahl der Patienten einen Child-Pugh-Score A bis maximal B. Die Rate der vaskulären Tumorthrombose lag zwischen 0-55 %. In diesen prospektiven Studien lag die akute Grad ≥3 Toxizität (gastrointestinal oder Leber) zwischen 0-30 %.

Eine Metaanalyse von 32 Studien mit 1950 HCC Patienten ergänzt die prospektiven Studien [326]. Die gepoolten 1-, 2-, und 3-Jahres-Überlebensraten lagen jeweils bei 72 %, 58 % und 48 % bei einer medianaen Tumorgröße von 3,3 cm (Spannweite des Median: 1,6-8,6 cm). Dabei korrelierten die Überlebensraten mit der Tumorgröße. Die Child-Pugh-Klasse korrelierte mit hepatischen Komplikationen ≥3 (p = 0,013).

für SBRT, 3D-cRT und TARE lagen bei 14 Monaten, 11,6 Monaten und 9,5 Monaten (p > 0,05). Die Lokalkontrollraten lagen dabei bei 86,9 %, 82,8 % und 57,5 % (p < 0,001), auch die Ansprechraten waren für die perkutane Radiotherapie höher als für die TARE. Die Verträglichkeit war dabei für die SBRT besser (keine Grad ≥3 Toxizitäten) als für die 3D-cRT (3 Fälle mit Grad ≥3).

Der Vergleich der Wirksamkeit einer Radiofrequenzablation mit einer SBRT wurde in einer Metaanalyse von 1990 Patienten mit HCC in überwiegend retrospektiven Studien beschrieben [327]. Nach 2 Jahren lag die Lokalkontrollrate im Vergleich zwischen SBRT und RFA bei 84,5 % gegenüber 79,5 % (p = 0,431), und die Odds Ratio für das Gesamtüberleben lag bei 1,43 der RFA gegenüber der SBRT. Schwierig zu interpretieren für diesen Vergleich ist die National Cancer Database Studie von Rajaguru, in der keine Daten zur Lokalkontrolle und zum Child-Pugh-Status vorliegen, die aber einen Überlebensvorteil für die RFA gegenüber der SBRT zeigt [328]. Demgegenüber zeigte der prospektive Vergleich in der Studie von Wahl et al. keinen Überlebensunterschied zwischen RFA und SBRT, aber eine bessere Lokalkontrolle nach SBRT [329]. Der Vergleich zwischen TACE und SBRT für BCLC-Stadium B und C Patienten ohne Portalvenenthrombose wurde in einer Propensity-Score-Analyse bei Patienten mit 1 bis 2 Tumoren durchgeführt und fand eine 2-Jahres-Lokalkontrollrate von 91 % nach SBRT gegenüber 23 % nach TACE, doch gab es keinen Unterschied hinsichtlich des Überlebens zwischen SBRT und TACE [330].

Interstitielle Brachytherapie

Insgesamt lässt sich aus der Literatur zur interstitiellen Brachytherapie bisher keine allgemeine Empfehlung ableiten, sie kommt bisher in nur wenigen Zentren zum Einsatz [331], [332], [333].

Durch eine interstitielle Brachytherapie können HCCs im Sinne einer lokal ablative Strategie behandelt werden, und die Therapie wird nach invasiver Katheteranlage in typischer Weise in einer einzigen Sitzung durchgeführt.

Protonentherapie

Wegen der fehlenden Austrittsdoxis von Protonen (Bragg-Peak) nach dem Erreichen des Zielvolumens wird eine gute Schonung normalen Lebergewebes physikalisch erleichtert. Insgesamt sind weit mehr als 500 Patienten in prospektiven [334], [335], [336], [337] und retrospektiven [338], [339], [340], [341] Studien untersucht worden, wobei die Therapie meist hypofraktioniert in ca. 15 Sitzungen erfolgt. Die Lokalkontrollraten sind auch für große HCC-Läsionen insgesamt hoch und die berichteten Überlebenszeiten gut. Ob die Protonentherapie wirklich äquivalent oder überlegen gegenüber der SBRT für die lokale Tumorkontrolle ist, muss derzeit noch unbeantwortet bleiben, da keine randomisierten Studien vorliegen. Darüber hinaus ist eine Protonentherapie derzeit nur an wenigen Zentren verfügbar.
3.4 Operative und interventionelle Therapieverfahren

<table>
<thead>
<tr>
<th>3.4.4</th>
<th>Nachsorge und Erfolgskontrolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.70</td>
<td>Konsensbasierte Empfehlung</td>
</tr>
<tr>
<td>EK</td>
<td>Erfolgskontrollen nach lokaler Therapie sollten mittels biphasischer CECT oder dynamischer MRT in einem Intervall von 4-12 Wochen nach Ablation/Resektion bzw. nach jedem TACE-Zyklus erfolgen.</td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
</tr>
<tr>
<td></td>
<td>CECT: Kontrastmittelverstärktes CT</td>
</tr>
</tbody>
</table>

| 3.71 | Konsensbasierte Empfehlung | geprüft 2022 |
| EK | Die Verlaufskontrolle nach erfolgreicher lokaler Therapie soll im ersten Jahr alle 3 Monate und im zweiten Jahr alle 3-6 Monate mittels biphasischer CECT oder dynamischer MRT stattfinden. |

3.72	Konsensbasierte Empfehlung	geprüft 2022
EK	Nach Abschluss der Nachsorge sollen die Patienten wieder in das Früherkennungsprogramm mit Ultraschall alle 6 Monate eingeschlossen werden.	
	Starker Konsens	

3.73	Konsensbasierte Empfehlung	geprüft 2022
EK	Die Remissionsbeurteilung nach Ablation/TACE/TARE soll nach mRECIST/EASL erfolgen.	
	Konsens	

Für die Abschätzung des Ansprechens nach interventioneller Therapie des HCCs wurden die mRECIST-Kriterien eingeführt. Über die für den Therapieausgang wichtige Genauigkeit dieser Methode liegen jedoch weiterhin nur wenige Daten vor. Das Liver Imaging /Reporting and Data System (LI-RADS) standardisiert die Interpretation und Be richterstattung von diagnostischen bildgebenden Untersuchungen für Patienten mit einem erhöhten Risiko für die Entstehung eines HCC. LI-RADS fasst die relevanten CT- und MRT-Merkmale primär für die Diagnostik zusammen, ist aber für die Beurteilung nach interventionellen Therapien nicht validiert [342], [343]. Bis zum heutigen Zeitpunkt hat sich dieses System in Deutschland auch für die Diagnostik nicht flächendeckend durchgesetzt.

Die postinterventionelle Verlaufskontrolle zur Beurteilung der Therapieeffektivität und somit des Therapieerfolges ist ein entscheidendes prognostisches Qualitätsmerkmal einer lokalen Therapie [344]. Allein aus diesem Grund ist eine Nachsorge nach Ablation eines HCC absolut erforderlich. Neben der morphologischen Beurteilung der behandelten intrahepatischen Läsion und somit der Effektivität des lokalablative
Therapieverfahrens dient die Bildgebung der Detektion postinterventioneller Komplikationen und im weiteren Verlauf auch des erneuten lokalen intra- und extrahepatischen Stagings \[345\]. Eine Kontrolle nach Ablation, TACE oder Resektion sollte 4-12 Wochen nach Intervention erfolgen.

3.4 Operative und interventionelle Therapieverfahren

3.4.5 Therapiealgorithmus

Abbildung 2: Therapiealgorithmus HCC in Zirrhose
Abbildung 3: Therapiealgorithmus des HCC in Zirrhose im Stadium A1 und A2
3.5 Systemtherapie

3.5.1 Substanzen mit einem Wirksamkeitsnachweis in Phase III Studien für die Systemtherapie des HCC

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Evidenzbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
</table>
| 1 | Für HCC-Patienten mit erhaltener Leberfunktion (im Child-Pugh-Stadium A), mit Fernmetastasen und/oder einer Tumorlokalisierung, die lokoregionär nicht kontrolliert oder reseziert werden kann, liegen Phase-III-Studien mit Wirksamkeitsnachweis vor, für:
 i. die Kombinationstherapie mit den Antikörpern Atezolizumab gegen PD-L1 und Bevacizumab gegen VEGF;
 ii. Tyrosinkinase-Inhibitoren mit Sorafenib und Lenvatinib, und nach einer Vortherapie mit Sorafenib für Regorafenib und Cabozantinib;
 iii. den VEGF-R2 Antikörper Ramucirumab für Patienten nach Sorafenib und einem Alpha-Fetoprotein-Wert von ≥ 400 ng/ml. | |
| | [356]; [357]; [359]; [360]; [361]; [362] | Erneute Recherche 2021, neue Literatur Facciorusso 2021 |

Starker Konsens

VEGF: Vascular Endothelial Growth Factor

In diesen Therapiestudien waren jeweils fibrolamelläre HCCs nicht untersucht worden. Für diese Tumorentität liegen keine Daten zur Wirksamkeit einer Systemtherapie vor.

3.5.2 Medikamentöse Erstlinien-Therapie des HCC

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>2</td>
<td>[358]; [357]; [363]; [359]</td>
</tr>
</tbody>
</table>

Starker Konsens
Die Kombinationstherapie A+B wurde im Vergleich zu Sorafenib für Patienten mit lokal fortgeschrittenem oder metastasiertem HCC ohne vorherige Systemtherapie getestet. In die Studie eingeschlossen wurden Patienten mit Child-Pugh A und ECOG PS 0 – 1. Besondere Voraussetzungen für den Studieneinschluss waren u. a. eine Ösophagogastroduodenoskopie innerhalb 6 Monate vor Behandlungsbeginn zum Ausschluss bzw. zur Behandlung blutungsgefährdeter Varizen, keine Proteinurie > 1g/24 h, keine arterielle Hypertorie mit einem systolischen Blutdruck > 150 und/oder diastolischem Blutdruck > 100 mmHg und keine Koinfektion mit Hepatitis B und C.

Beide Faktoren des kombinierten primären Endpunktes Gesamtüberleben und progressionsfreies Überleben (PFS) zeigten einen Vorteil für A+B: (i) das mediane Gesamtüberleben war zum Zeitpunkt der ersten Publikation im A+B Arm noch nicht erreicht gegenüber 13,2 Monate mit Sorafenib (HR: 0,58 [95% CI: 0,42; 0,79], p < 0,001); (ii) das PFS lag für A+B bei 6,8 Monaten vs. 4,3 Monaten mit Sorafenib (HR: 0,59 [95% CI: 0,47; 0,76], p < 0,001). Nach einer längeren Nachbeobachtungszeit wurde das Gesamtüberleben mit 19,2 Monaten für A+B gegenüber 13,4 Monaten mit Sorafenib berichtet [Finn et al. J Clin Oncol 39, 2021 (suppl 3; abstr 267)].

Die Ansprechraten für A+B nach RECIST 1.1 lag bei 33,0 % (95% CI: 25; 35) und für Sorafenib bei 11 % (95% CI: 7; 17). Eine Komplettremission zeigte sich bei 8 % der Patienten mit A+B, bei Sorafenib wurde eine CR bei einem Patienten (<1 %) nachgewiesen. Hauptnebenwirkungen mit Grad 3/4 Toxizität bei A+B waren arterielle Hypertonie, Erhöhung von Transaminasen oder Proteinurie. Mehr Patienten beendeten die Therapie von A+B aufgrund von Nebenwirkungen als bei Sorafenib (38 % vs. 31 %) bei allerdings erheblich längerer Behandlungsdauer im Median von 7,4 Monaten mit A+B gegenüber 2,8 Monaten bei Sorafenib.

Für die Messung der Lebensqualität wurde der Fragebogen EORTC QLQ-C30 eingesetzt. Hierbei zeigten sich signifikante Unterschiede in der medianen Zeit bis zur Verschlechterung („Time to Deterioration“, TTD) zugunsten von A+B in Bezug auf die Lebensqualität von 11,2 vs. 3,6 Monaten (HR: 0,63 [95% CI: 0,46; 0,85]), die physische Funktion von 13,1 vs. 4,9 Monaten (HR: 0,53 [95% CI: 0,39; 0,73] und der Rollenfunktion von 9,1 Monaten vs. 3,6 Monaten (HR: 0,62 [95% CI: 0,46; 0,84]).

Sorafenib führte in der 2008 berichteten Zulassungsstudie bei Patienten mit fortgeschrittenem HCC, ECOG 0 – 2, Albumin ≥2,8 g/dl, Gesamtbilirubin ≤3 mg/dl zu einem Gesamtüberleben von 10,7 Monaten gegenüber 7,9 Monaten mit Placebo [363]. Die Überlebensrate nach 1 Jahr betrug 44 % mit Sorafenib gegenüber 33 % mit Placebo, der Zeitpunkt bis zur radiologischen Progression verlängerte sich unter Sorafenib von 2,8 auf 5,5 Monate. In einer vergleichbaren Phase-III-Studie aus dem asiatisch-pazifischen Raum konnte ebenfalls ein signifikant besseres Gesamtüberleben mit 6,5 Monaten gegenüber 4,2 Monaten mit Placebo erreicht werden [358]. Für Sorafenib liegen weitere Daten als Kontrollarm aus 5 Phase-III-Studien vor. In allen diesen zusätzlichen Studien fand allerdings eine Beschränkung auf Patienten mit ECOG-Stadium 0 – 1 statt. Das mediane Gesamtüberleben bei 4 Studien, die keinen Vorteil gegenüber Sorafenib zeigen konnten und weitgehend vergleichbare Einschlusskriterien aufwiesen, lag für Sorafenib konsistent zwischen 9,1 und 10,2 Monaten [365], [366], [367], [368].

Die „Nicht-Unterlegenheit“ von Lenvatinib im Vergleich zu Sorafenib wurde für ECOG 0-1, Tumorbefall der Leber ≤ 50 %, Albumin ≥ 2,8 g/dl, Gesamtbilirubin ≤ 3 mg/dl und fehlender Invasion des Ductus Choledochus (DHC) oder des Pfortaderhauptstammes 2018 berichtet [359]. Hierbei zeigte sich ein Gesamtüberleben für Lenvatinib von 13,6 Monaten und von Sorafenib in diesem Patientenkollektiv von 12,3 Monaten.
Überraschend war dabei für Lenvatinib ein statistisch längeres progressionsfreies Überleben (PFS) von 7,4 Monaten gegenüber 3,7 Monaten bei Sorafenib und ein objektives Ansprechen bei 40,6 % nach mRECIST und 18,8 % nach RECIST 1.1 bei Lenvatinib gegenüber 12,4 % nach mRECIST und 6,5 % nach RECIST 1.1 bei Sorafenib. In Subgruppenanalysen zeigte sich ein Trend für eine bessere Wirkung von Lenvatinib in Bezug auf das PFS bei alkoholisch oder HBV bedingter Leberzirrhose im Vergleich zu Hepatitis C bzw. in Bezug auf das Gesamtüberleben eine etwas bessere Wirkung bei Patienten mit einem AFP-Wert von ≥ 200 ng/ml im Vergleich zu < 200 ng/ml.

3.5.3 Medikamentöse Therapie bei Leberzirrhose CHILD-Pugh B/C

3.76 Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Für einzelne HCC-Patienten im Child-Pugh-Stadium B (bis 8 Punkte), mit Fernmetastasen oder einer Tumorlokalisation, die lokoregionär nicht kontrolliert oder reseziert werden kann und mit einem ECOG-Status von 0 – 1, kann eine Systemtherapie mit Sorafenib angeboten werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Konsens

3.77 Konsensbasierte Empfehlung

| EK | Für einzelne HCC-Patienten im Child-Pugh-Stadium B (bis 8 Punkte), mit Fernmetastasen oder einer Tumorlokalisation, die lokoregionär nicht kontrolliert oder reseziert werden kann und einem ECOG-Status von 0 – 1, kann eine Immuntherapie mit einem anti-PD-1-Antikörper angeboten werden. | geprüft 2022 |

Konsens

3.78 Konsensbasierte Empfehlung

| EK | Bei HCC-Patienten im Stadium Child-Pugh C sollte keine Systemtherapie durchgeführt werden. | geprüft 2022 |

Starker Konsens

In der GIDEON (Global Investigation of therapeutic decisions in hepatocellular carcinoma and of its treatment with sorafenib)-Studie wurden Daten von 3371 Patienten aus 39 Ländern ausgewertet [369]. Innerhalb der Studie konnte der Child-Pugh-Status vor Therapiebeginn mit Sorafenib bei 2708 Patienten zugeordnet werden: 1968 (73 %) Child-Pugh A, 666 (25 %) B und 74 (3 %) C. Die Studie zeigte die prinzipielle Anwendbarkeit von Sorafenib auch für ausgewählte Patienten mit eingeschränkter Leberfunktion. Der Anteil von Patienten mit Therapieabbruch innerhalb 8 Wochen lag bei Child-Pugh A bei 26 %, B7 bei 38 %, B8 bei 44 % und B9 bei 49 %. Die Häufigkeit und Art der Nebenwirkungen war zwischen Patienten mit Child-Pugh A und B im Wesentlichen...
identisch. In der Intent-to-Treat-Population (2717 Patienten) erreichten Patienten mit Child-Pugh A ein medianes Gesamtüberleben von 13,6 Monate, mit Child-Pugh B7 6,2 Monate, B8 4,8 Monate und B9 3,7 Monaten und mit Child-Pugh C 2,6 Monate. In Kombination mit dem BCLC-Stadium ergaben sich ein medianes Gesamtüberleben für Child-Pugh A und BCLC B von 19,5 Monate bzw. BCLC C von 11,2 Monate sowie für Child-Pugh B und BCLC B von 10,0 Monate bzw. BCLC C von 3,8 Monate.

Die INSIGHT-Studie untersuchte die Gabe von Sorafenib bei 782 Patienten aus Deutschland und Österreich [370]. Der Child-Pugh-Status wurde vor Therapie bei 443 Patienten (57 %) mit A, bei 182 Patienten (23 %) mit B und bei 26 Patienten (3 %) mit C bestimmt. Das mediane Gesamtüberleben aller Patienten betrug 15,1 Monate, für Patienten mit BCLC A 29,2 Monate, B 19,6 Monate, C 13,6 Monate und D 3,1 Monate. In Abhängigkeit des Child-Pugh-Status betrug das mediane Gesamtüberleben bei A 17,6 Monate, bei B7 8,1 Monate, B8 9,5 Monate, B9 2,4 Monate. Neben der Bedeutung des Child-Pugh-Status zeigte der ECOG Status einen erheblichen Einfluss auf das Gesamtüberleben mit ECOG 0 von 23,3 Monaten, 1 von 14,6 Monaten, 2 von 7,4 Monaten und 3 von 1,5 Monaten.

3.5.4 Kombination von Systemtherapie mit lokoregionärer Therapie

<table>
<thead>
<tr>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>B</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>2</td>
</tr>
</tbody>
</table>

Bei HCC-Patienten im Stadium Child-Pugh A und BCLC B, die eine lokoregionäre Therapie erhalten, sollte außerhalb von Studien keine zusätzliche Kombination mit einer Systemtherapie erfolgen.

In der SPACE-Studie wurden 307 Patienten, bei denen eine TACE mit Doxorubicin-eluting Beads (DEB-TACE) durchgeführt worden ist, zusätzlich 1:1 randomisiert für Sorafenib oder Placebo [379]. Einschlusskriterien waren BCLC B, Child-Pugh A, ECOG 0 und das Fehlen von Aszites. Der primäre Endpunkt der Studie mit Zeit bis zur Progression (TTP) war nahezu identisch zwischen den beiden Gruppen TACE plus Placebo vs. TACE plus Sorafenib (166 Tage vs. 169 Tage). Als sekundärer Endpunkt konnte auch im Gesamtüberleben kein statistischer Unterschied festgestellt werden.

In der japanischen TACTICS-Studie wurde TACE gegenüber TACE plus Sorafenib verglichen [382]. Dabei wurde Tumorprogression als fehlende Möglichkeit einer weiteren TACE-Intervention definiert. Kriterien hierfür waren intrahepatische Tumorprogression > 25 % gegenüber baseline, vorübergehende CHILD-Pugh C Situation nach vorangegangener TACE, makrovaskuläre Invasion oder extrahepatische Progression. Als Besonderheit wurden neu auftretende intrahepatische Läsionen nicht als Tumorprogression gewertet und die Beurteilung des Ansprechens erfolgte mit den "Response Evaluation Criteria in Cancer of the Liver (RECICL)" [383]. In dieser Studie wurde der primäre Endpunkt mit einem verlängerten PFS in der Gruppe TACE plus Sorafenib mit 25,2 Monaten erreicht gegenüber 13,5 Monaten in der TACE Gruppe. Bei den klinischen Daten der eingeschlossenen ausschließlich asiatischen Studienpatienten fiel dabei auf, dass im TACE-Arm mehr Patienten mit Hepatitis C (69,7 vs. 47,5 %) und weniger Patienten mit der günstigsten Einstufung des CHILD-Pugh Wertes von 5 (71,1 vs. 80 %) eingeschlossen...
worden sind. Die Analyse des Gesamtüberlebens zeigte im Gegensatz zum PFS keinen signifikanten Unterschied der beiden Gruppen mit 36,2 Monaten im TACE plus Sorafenib Arm gegenüber 30,8 Monaten mit TACE alleine (HR, 0,861 [95% CI: 0,607; 1,223]; p = 0,40) [384]

3.5.5 Medikamentöse Therapie nach Versagen, Unverträglichkeit oder bei Kontraindikationen der Erstlinientherapie des HCC

<table>
<thead>
<tr>
<th>3.80</th>
<th>Konsensbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Überlegenheit von Atezolizumab und Bevacizumab im Vergleich zu Sorafenib führt zu einer Verschiebung der zuvor etablierten Therapielinien.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.81</th>
<th>Konsensbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Systemtherapie mit einem zugelassenen Tyrosinkinaseinhibitor soll nach Progress oder bei Unverträglichkeit von Atezolizumab und Bevacizumab angeboten werden bei HCC-Patienten im Child-Pugh-Stadium A und BCLC B oder C, mit Fernmetastasen oder einer Tumorlokalisation, die lokoregionär nicht kontrolliert oder reseziert werden kann.</td>
<td>Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.82</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bei HCC-Patienten mit Tumorprogress unter einer Therapie mit Sorafenib, Child-Pugh-Stadium A und ECOG 0 - 1, soll eine weitere Systemtherapie angeboten werden. Hierfür stehen die beiden Tyrosinkinase-Inhibitoren Regorafenib und Cabozantinib oder bei einem Alpha-Fetoprotein-Wert von ≥ 400 ng/ml der VEGFR2-Antikörper Ramucirumab zur Verfügung.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Level of Evidence 2: [361]; [362]; [385]
Erneute Recherche 2021, keine neuen Studien
Bei HCC-Patienten im Child-Pugh-Stadium A und ECOG 0 - 1 mit Tumorprogress unter einer Therapie mit Lenvatinib soll eine weitere tumorspezifische Therapie angeboten werden.

Einschlusskriterien für eine Behandlung mit Regorafenib in der Phase-III-Studie RESORCE waren u. a. dokumentierter Progress unter einer Vortherapie mit Sorafenib, ECOG 0 - 1, kein Behandlungsabbruch von Sorafenib aufgrund von Toxizität und Toleranz von Sorafenib in einer Dosierung von ≥ 400 mg täglich über mindestens 20 von 28 Tagen vor der Tumorprogression [360]. In diesem selektionierten Kollektiv erreichte Regorafenib ein medianes Gesamtüberleben von 10,6 Monaten gegenüber 7,8 Monaten mit Placebo. Der mediane Zeitraum bis zur Progression lag bei 3,2 Monaten mit Regorafenib gegenüber 1,5 Monaten mit Placebo. In Subgruppenanalysen zeigte sich u. a. ein Unterschied im Gesamtüberleben zugunsten von Regorafenib für Patienten mit extrahepatischem Tumorbefall im Vergleich zu einer Begrenzung des Tumors auf die Leber, für Patienten ohne Hepatitis C oder für Patienten ohne Alkoholanamnese als Ursache der Lebererkrankung. Ein objektives Ansprechen nach mRECIST zeigte sich bei 11 % und nach RECIST 1.1 bei 7 % im Regorafenib-Arm gegenüber 4 % (mRECIST) und 3 % (RECIST 1.1) unter Placebo.

Einschlusskriterien für eine Behandlung mit Cabozantinib in der Phase-III-Studie „CELESTIAL“ waren u. a. Vorbehandlung mit Sorafenib, Progression unter einer medikamentösen Vortherapie, Gabe von Cabozantinib als Zweit- oder Drittlinientherapie, ECOG 0 - 1, Bilirubin ≤ 2 mg/dl und Serumalbumin ≥ 2,8 g/dl [361]. Die Behandlung mit Cabozantinib führte zu einem medianen Gesamtüberleben von 10,2 Monaten gegenüber 8,0 Monaten mit Placebo. Das PFS war mit 5,2 Monaten deutlich verlängert im Vergleich zu Placebo mit 1,9 Monaten und die objektive Ansprechrate nach RECIST 1.1 betrug 4 % im Cabozantinib-Arm gegenüber 0,4 % unter Placebo. Die Überlebensrate nach 12 bzw. 24 Monaten war für Cabozantinib 46 % bzw. 18 % und für Placebo 34 % bzw. 13 %. In Subgruppenanalysen zeigte sich ein Trend zu einem besseren Gesamtüberleben unter Cabozantinib für Patienten mit AFP-Wert ≥ 400 ng/ml, extrahepatischem Tumorbefall, Vorliegen einer HBV Infektion oder fehlender Infektion mit HBV oder HCV, sowie für lediglich eine im Vergleich zu zwei medikamentösen Vortherapien. Die mediane Dosis von Cabozantinib lag in der CELESTIAL-Studie bei 35,8 mg im Vergleich zu 58,9 mg bei Placebo (die Zieldosis der Studie lag bei 60 mg), so dass im klinischen Alltag eine Dosisreduktion im Vergleich zu den in der Zulassung empfohlenen 60 mg pro Tag die Regel sein dürfte.

Therapiebeginn aufwiesen, zeigte sich ein etwas deutlicherer Unterschied im medianen Gesamtüberleben zugunsten von Ramucirumab mit 8,1 Monaten gegenüber 5 Monaten [364].

Anwendungsgebiete laut aktueller Zulassung:

- **Atezolizumab** ist indiziert in Kombination mit Bevacizumab bei erwachsenen Patienten für die Behandlung des fortgeschrittenen oder nicht resezierbaren hepatzellulären Karzinoms, die keine vorherige systemische Behandlung erhalten haben.
- **Lenvatinib** ist indiziert als Monotherapie für die Behandlung von erwachsenen Patienten mit fortgeschrittenem oder inoperablem Hepatozellulären Karzinom, die zuvor noch keine systemische Therapie erhalten haben.
- **Sorafenib** ist angezeigt zur Behandlung des Leberzelligkarzinoms.
- **Cabozantinib** ist indiziert als Monotherapie für die Behandlung des Leberzellkarzinoms bei Erwachsenen, die zuvor mit Sorafenib behandelt wurden.
- **Regorafenib** ist angezeigt als Monotherapie zur Behandlung von erwachsenen Patienten mit Hepatozellulärem Karzinom, die zuvor mit Sorafenib behandelt wurden.
- **Ramucirumab** ist als Monotherapie indiziert zur Behandlung von erwachsenen Patienten mit fortgeschrittenem oder inoperablem Hepatozellulären Karzinom, die ein Serum-Alpha-Fetoprotein (AFP) von ≥ 400 ng/ml aufweisen und die zuvor mit Sorafenib behandelt wurden.

* Abbildung 4: Sequenztherapie beim HCC innerhalb der zugelassenen Indikationen

© Leitlinienprogramm Onkologie | S3-Leitlinie Hepatozelluläres Karzinom und biliäre Karzinome | Version 3.0 | Juli 2022
Nachdem für das HCC mehrere unterschiedliche medikamentöse Tumortherapien zur Verfügung stehen, sollte die Therapie mit einer bestimmten Substanz nicht über einen radiologischen Progress hinaus fortgesetzt werden. Sofern der ECOG-Status und die Leberfunktion noch eine weitere verfügbare Therapie zulassen, sollte rechtzeitig bei Progress eine Therapieänderung durchgeführt werden.

In allen Phase-III-Studien mit Sorafenib mussten regelmäßig Dosisreduktionen durchgeführt werden. In der initialen Zulassungsstudie waren für Sorafenib bei 26 % der Patienten eine Reduktion der Ausgangsdosis von 800 mg notwendig, im Vergleich zu 7 % bei Placebo [363]. In nachfolgenden Phase-III-Studien, in denen Sorafenib als Vergleichsarm mitgeführt wurde, lag diese Rate mit 32,8 – 69 % deutlich höher [365], [366], [367], [368]. Daher wird eine engmaschige Überwachung der Toxizität empfohlen, da durch Dosisreduktion bzw. Umstellung auf Therapiealternativen Toxizität reduziert oder vermieden werden kann.

Basierend auf der Klassifikation Barcelona Clinic Liver Cancer (BCLC) wurde von Reig et al. [386] eine Ergänzung für Patienten mit Tumorprogress unter einer Therapie als „BCLCp Modell“ vorgeschlagen. Grundlage für diese Klassifikation, welche an einer Kohorte von HCC-Patienten unter Behandlung mit Sorafenib etabliert worden ist, ist das Muster der Tumorprogression. Unterschieden wird dabei grundsätzlich, ob einerseits eine Tumorprogression ≥ 20 % von vorbekannten Läsionen oder neue intrahepatische Läsionen aufgetreten sind (Stadium BCLCp-B oder BCLCp-C1) bzw. andererseits ob neue extrahepatische Läsionen und/oder eine neu diagnostizierte vaskuläre Invasion festgestellt worden sind (BCLCp-C2). Die schlechteste Prognose für das Überleben nach Progress zeigten dabei Patienten mit BCLCp C2 mit 7,1 Monaten im Vergleich zu BCLCp C1 mit 14,9 Monaten [386]. Für die klinische Praxis relevant ist die daraus abgeleitete Frage, ob Patienten mit guter Verträglichkeit einer Therapie und einer trotz Progress günstigen Prognose bei BCLCp-B zunächst über den Progress hinaus behandelt werden sollten, insbesondere wenn keine weitere Therapie zur Verfügung stehen sollte. Diese Frage kann aufgrund der aktuellen Datenlage derzeit nicht beantwortet werden.
zugelassen worden. Im April 2021 hat das "Oncologic Drug Advisory Committee" der amerikanischen Behörde FDA diese Zulassung nach Prüfung inzwischen vorliegender weiterer Studiendaten für Nivolumab widerrufen, für Pembrolizumab jedoch bestätigt. Die Firma BMS hat daher die Indikation für die Monotherapie mit Nivolumab beim HCC im Juli 2021 freiwillig zurückgezogen. Unbeinflusst davon ist die Zulassung in den USA für die Kombinationstherapie von Nivolumab mit Ipilimumab nach einer Vortherapie mit Sorafenib. In Europa liegt bisher keine Zulassung für diese Checkpoint-Inhibitoren vor. Grundlage für die Zulassung durch die FDA für Nivolumab war die CheckMate 040-Studie mit 262 Patienten [392], in der 20 % der Patienten entweder eine komplette (CR) oder partielle (PR) Remission, 45 % eine stabile Erkrankung (SD) und 32 % eine Tumorprogression (PD) als sog. „Best Response“ erreicht haben. Die mediane Dauer des Tumoransprechens lag bei 17 Monaten, was darauf hinweist, dass einige Patienten erheblich von der Therapie profitieren. Klinische Charakteristika oder Biomarker, die ein Therapieansprechen vorhersehen könnten, sind bisher nicht bekannt. Vergleichbare Daten konnten für Pembrolizumab in der Keynote 224-Studie gezeigt werden [393] mit CR oder PR bei 17 %, SD bei 44 % und PD bei 33 % der Patienten. In der Zwischenzeit sind randomisierte Phase-III-Daten in der Erstlinie für Nivolumab vs. Sorafenib (CheckMate 459; Yau et al., ESMO 2019) und in der Zweitlinie Pembrolizumab vs. Placebo [394] (Keynote 240) vorgestellt worden, ohne dass in diesen Studien ein signifikanter Vorteil für die Immuntherapie gezeigt werden konnte. Faktoren, die zu einem negativen Studienergebnis beigetragen haben dürften, sind u.a. die Tatsache, dass nur eine Subgruppe von Patienten von der Therapie deutlich profitieren, die Postprogressions-Therapien im Kontrollarm (u.a. Nivolumab oder Pembrolizumab), sowie fehlende Biomarker für die Therapiestratifizierung. Grundlage für die FDA-Zulassung von Nivolumab mit Ipilimumab war die Phase I/II CheckMate 040 Studie, bei der unterschiedliche Dosierungen von Ipilimumab und Nivolumab in drei Armen getestet worden sind. Zugelassen wurde die viermalige Gabe von Ipilimumab 3 mg/kg Körpergewicht (KG) in Kombination mit Nivolumab 1 mg/kg KG alle 3 Wochen, gefolgt von einer Monotherapie mit Nivolumab. Mit dieser Therapie wurde in einer Gruppe von 50 Patienten eine Ansprechraten von 32 % erzielt mit einer Komplettremission bei 4 Patienten und partiellen Remission bei 12 Patienten, das mediane Gesamtüberleben lag bei 22,8 Monaten [391].

3.5.6 Adjuvante Therapie nach Resektion

<table>
<thead>
<tr>
<th>3.66</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad A</td>
<td>Bei HCC-Patienten nach erfolgreicher Resektion oder lokaler Ablation mit radiologisch kompletter Remission soll außerhalb von Studien keine adjuvante Systemtherapie durchgeführt werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence 2</td>
<td></td>
<td>375</td>
</tr>
</tbody>
</table>

Die STORM-Studie untersuchte Sorafenib als adjuvante Therapie bei Patienten mit HCC nach einer chirurgischen Resektion oder lokaler Ablation [253]. Einschlusskriterien für die Resektion waren eine singuläre Läsion und für die Ablation eine singuläre Läsion ≤ 5 cm bzw. bis zu 3 Läsionen ≤ 3 cm. Weiterhin Child-Pugh ≤ 7, kein Aszites, ECOG 0 und AFP-Wert ≤ 400 ng/ml. Insgesamt wurden 1114 Patienten für Sorafenib oder Placibo randomisiert und über einen Behandlungszeitraum von 4 Jahren oder bis zum Rezidiv behandelt. Der primäre Endpunkt des rezidivfreien Überlebens zeigte keinen Unterschied mit einem medianen Zeitraum von 33,3 Monaten mit Sorafenib und 33,7 Monaten ohne Sorafenib. Es zeigte sich ebenfalls kein Einfluss auf das Gesamtüberleben als sekundärer Endpunkt.

3.5.7 Verlaufskontrollen unter Systemtherapie

<table>
<thead>
<tr>
<th>3.77</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Beim HCC unter Systemtherapie sollte alle 6–12 Wochen die am besten geeignete Schnittbildgebung (CT oder MRT) durchgeführt werden. Die Interpretation im klinischen Alltag sollte sich an den Auswerteprinzipien von RECIST 1.1 und mRECIST, sowie für Patienten unter einer Immuntherapie an iRECIST orientieren.</td>
<td></td>
</tr>
</tbody>
</table>

Starker Konsens

3.5.8 HCC bei Kindern und Jugendlichen

<table>
<thead>
<tr>
<th>3.88</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten <17 Jahre sollen einem pädiatrisch onkologischen Zentrum zugewiesen werden.</td>
<td></td>
</tr>
</tbody>
</table>

Pädiatrische Patienten mit einem nichtmetastasierten HCC mit kompletter primärer Resektion haben ein ereignisfreies 5-Jahres-Überleben von 80–90 %, in allen anderen Situation von 10–20 % trotz Versuche mit verschiedensten Chemotherapiekombinationen [395], [396], [397]. Im Gegensatz zu erwachsenen Patienten findet man bei Kindern und Jugendlichen in fast 50 % ein Ansprechen auf Chemotherapie [396]. Es ist unklar,

3.6 Supportivtherapie des Hepatozellulären Karzinoms und der biliären Karzinome

In der S3-Leitlinie zur supportiven Therapie von onkologischen Patienten wird auf die folgenden Themen detailliert eingegangen:

- Tumorthe rapie-induzierte Anämie
- Prophylaxe der Tumorthe rapie-induzierten Neutropenie mit granulopoetischen Wachstumsfaktoren
- Tumorthe rapie-induzierte Nausea und Emesis
- Tumorthe rapie-induzierte Diarrhoe
- Orale Mucositis durch systemische Tumorthe rapie
- Tumorthe rapie-induzierte Hauttoxizität
- Neurotoxizität – Chemotherapie-induzierte periphere Neuropathie (CIPN)
- Ossäre Komplikationen
- Ossäre Manifestationen
- Medikamentöse Intervention
- Chirurgische Intervention
- Strahlentherapeutische Intervention
- Radionuklidtherapie
- Therapieassozierte Osteoporose
- Paravasate
- Supportive Maßnahmen in der Radioonkologie
- Radiogene Enteropathie/ Enteritis
- Chronische Enteropathie/ Enteritis- Therapie der chronischen Diarrhoe
- Radiogene Proktitis
- Späte radiogene Proktitis
- Radiodermatitis
- Osteoradionekrose (ORN)
- Radiogene Mukositis
- Radiogene Xerostomie
- Radiogene Pneumonitis
- Radiotherapie-induzierte Nausea und Emesis
- Strahlenfolgen an Gehirn und Rückenmark
3.6.1 Ernährung

<table>
<thead>
<tr>
<th>3.89</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Mangelernährung beeinträchtigt die Lebensqualität und Therapietoleranz. Eine Mangelernährung sollte erfasst und behandelt werden.</td>
<td></td>
</tr>
</tbody>
</table>

Mangelernährung bei Krebserkrankungen, wie sie auch bei HCC Patienten oftmals vorkommt [399], [400], wird mit vermehrten Komplikationen, längerer Krankenhausverweildauer, schlechter Lebensqualität, höheren Toxizitäten der Antitumortherapie und Mortalität in Verbindung gebracht [401]. Das Vorliegen einer präoperativen Mangelernährung bei HCC Patienten mit Leberresektion ist assoziiert mit erhöhter postoperativer Komplikationen und längere Krankenhausverweildauer [400], [402].

3.6.2 Palliativmedizinische Behandlung beim HCC/CCA

Beim Leberzellkarzinom und Gallengangskarzinom sollten hier vor allem die Empfehlungen zum Thema Pruritus, Inappetenz, Übelkeit und Schmerzen Beachtung finden.

Dort finden sich auch wichtige Empfehlungen zu Versorgungsstrukturen in der Palliativmedizin, inklusive eines Behandlungspfades für Patienten und Angehörige, da den Angehörigen bei der Betreuung dieser Patientengruppe eine wichtige Rolle zukommt.
3.6 Supportivtherapie des Hepatozellulären Karzinoms und der bilären Karzinome

3.6.3 Integration von Palliativversorgung

Eine Palliativversorgung kann nur bei rechtzeitiger Einbeziehung in den Behandlungsverlauf von Patienten besonders wirksam sein. Es gelten daher auch hier die allgemeinen Empfehlungen für die Integration von Palliativversorgung, gemäß der o.g. S3-Leitlinie.

3.90 Konsensbasierte Empfehlung geprüft 2022

EK
Alle Patienten mit einer Krebserkrankung sollen unabhängig vom Krankheitsstadium Zugang zu Informationen über Palliativversorgung (z. B. durch Auslage von Flyern) haben.

Starker Konsens

3.91 Evidenzbasierte Empfehlung geprüft 2022

Empfehlungsgrad

A
Allen Patienten soll nach der Diagnose einer nichtheilbaren Krebserkrankung eine Palliativversorgung angeboten werden, unabhängig davon, ob eine tumorspezifische Therapie durchgeführt wird.

Level of Evidence

1
[410]; [411]; [412]; [413]; [414]; [415]; [416]; [417]; [418]
Leitlinienadaptation S3-Leitlinie Palliativmedizin Langversion 2.2.-September 2020

Konsens

3.6.3.1 Zeitpunkt der Integration von Palliativversorgung beim HCC/CCA

3.92 Konsensbasierte Empfehlung geprüft 2022

EK
Allen Patienten mit einem HCC im Stadium BCLC D sollte aktiv eine Palliativversorgung angeboten werden.

Starker Konsens

3.93 Konsensbasierte Empfehlung geprüft 2022

EK
Allen Patienten mit einem Cholangiokarzinom im Stadium IV nach UICC-Klassifikation soll eine Palliativversorgung angeboten werden.

Starker Konsens

Die Beantwortung dieser Frage und die Einschätzung der Prognose sind bei der großen Auswahl neuer Therapiemöglichkeiten nicht immer einfach.

Minimalstandard sollte jedoch sein, in Anlehnung an die Leitlinie der „European Association for the Study of the Liver“, dass allen Patienten ab einem Stadium D nach BCLC, aktiv eine Palliativversorgung angeboten wird [3]. Beim Cholangiokarzinom, sollten Patienten ab einem Stadium IV nach UICC (Union for International Cancer Control) eine palliativmedizinische Vorstellung angeboten werden.

3.6.4 Palliative Symptomkontrolle bei Patienten mit HCC/CCA

Allgemeine Symptomkontrolle

Pruritus

<table>
<thead>
<tr>
<th>3.94</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Der Pruritus sollte analog der AWMF-S2k-Leitlinie Pruritus behandelt werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Fallserien gibt es für Propofol intravenös, Lidoceain intravenös, Dronabidol oral, Butorphanol nasal sowie Phenobarbital oral.

3.6.5 Rehabilitation, Sport- und Bewegungstherapie

<table>
<thead>
<tr>
<th>3.95</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit HCC/CCA sollten zu körperlichen Aktivitäten und/oder Bewegungstherapie motiviert werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.96</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Der Nutzen einer Anschlussbehandlung und von Rehabilitationsmaßnahmen (hinsichtlich Lebensqualität, Leistungsfähigkeit, krankheitsfreiem Überleben, Gesamtüberleben) ist für das HCC/CCA nicht ausreichend evaluiert. Dennoch sollte den Patienten, die die Voraussetzungen erfüllen, eine AHB oder Rehabilitation angeboten werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

AHB: Anschlussrehabilitation

<table>
<thead>
<tr>
<th>3.97</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die rehabilitative Therapie soll medizinische, pflegerische, aufklärende, trainierende und psychosoziale Maßnahmen umfassen, die dem individuellen Rehabilitationsbedarf angepasst werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

3.6.6 Psychoonkologie

Zur psychoonkologischen Versorgung liegt ebenfalls eine S3-Leitlinie des Leitlinienprogramms Onkologie vor, die auch für Patienten mit HCC/CCA gültig ist: https://www.leitlinienprogramm-onkologie.de/leitlinien/psychoonkologie/.

<table>
<thead>
<tr>
<th>3.98</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
</table>
| EK | Die Erfassung der psychischen Belastung sowie die psychoonkologische Behandlung sollten, wie in der S3-Querschnittsleitlinie Psychoonkologie beschrieben, erfolgen. | }

Wie erwartet, führten die Chirurgie [447], Interventionen wie Chemoembolisation [448] und Radiotherapie [441] zu einer Verbesserung der gesundheitsbezogenen Lebensqualität bei Patienten mit HCC:

Patientenzentrierte Kommunikation, Information und Aufklärung

Befragungen von Krebspatienten ergeben übereinstimmend Defizite hinsichtlich ihrer Bedürfnisse nach Information; diese zählen zu den wichtigsten und häufigsten ‚unmet needs’ von Krebspatienten aller Diagnosen und Krankheitsstadien [451], [452]. Studien belegen günstige Auswirkungen angemessener Aufklärung und Informationsvermittlung hinsichtlich Krankheitsverarbeitung, besserem psychischen Befinden und höherer Lebensqualität [453], [454], [455], [456]. Professionelle kommunikative Kompetenz von Ärzten gewährleistet, dass Informationen im gesamten Krankheits- und Behandlungsverlauf angemessen, orientiert am jeweiligen Bedürfnis und auf eine für Patienten

Konsensbasierte Empfehlung

geprüft 2022

<table>
<thead>
<tr>
<th>3.98</th>
<th>Starker Konsens</th>
</tr>
</thead>
</table>

EK

Die Kommunikation mit Patienten mit HCC/CCA und ihren Angehörigen soll wiederholt in allen Phasen der Erkrankung und durch alle behandelnden Berufsgruppen patientenzentriert erfolgen und soll sich an deren individuellen Anliegen, Bedürfnissen und Präferenzen orientieren, welche Information, Aufklärung und Beteiligung an Entscheidungen betreffen.

<table>
<thead>
<tr>
<th>3.99</th>
<th>Starker Konsens</th>
</tr>
</thead>
</table>

© Leitlinienprogramm Onkologie | S3-Leitlinie Hepatozelluläres Karzinom und biliäre Karzinome | Version 3.0 | Juli 2022
verständliche Weise vermittelt werden [456], [457], [458]. Patienten sollten ermutigt werden, dem Arzt mitzuteilen, welche Informationen aktuell für sie wichtig sind, wie umfassend und wie detailliert diese sein sollen. Ebenso ist ihre individuelle Präferenz hinsichtlich geteilter Entscheidungsfindung (z.B. zur Tumorbehandlung) zu klären und zu berücksichtigen [459], [460]. Behandlungsoptionen und mögliche Alternativen sollen klar und verständlich vermittelt werden, mit realistischen Informationen zur Wirksamkeit und zu potenziell nachteiligen Auswirkungen auf verschiedene Lebensbereiche; dies trifft bei Patienten mit HCC im Besonderen für die adäquate Vorbereitung auf eine Lebertransplantation zu [461], [462], [463]. Angehörige und weitere Bezugspersonen sollen, wann immer möglich, einbezogen werden. Die Präferenzen hinsichtlich patientenzentrierter Kommunikation (PZK) variieren [464] bei Tumorpatienten und können sich im zeitlichen Verlauf verändern. Besonders bei ungünstiger Prognose oder in fortgeschrittenen Krankheitsphasen bevorzugen Tumorpatienten eine patientenzentrierte Haltung ihrer Ärzte in Form von Verständnis, Empathie und Unterstützung [465], [466], [467]. Patienten, die ihren Arzt als ‚empathisch‘ und ‚aufmerksam‘ empfanden, waren nach der Konsultation zufriedener, psychisch weniger belastet und hatten eine höhere Selbstwirksamkeit [465], [468], [469]. Diese individuellen Anliegen, Bedürfnisse und Präferenzen sollen wiederholt im Krankheitsverlauf, insbesondere in kritischen Krankheitsphasen (Diagnose, Rezidiv/Progredienz) erfragt werden.
4 Diagnostik und Therapie der biliären Karzinome

4.1 Risikofaktoren, Prävention und Früherkennung

4.1.1 Risikofaktoren

Evidenzbasiertes Statement geprüft 2022

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Risikofaktoren für die Entwicklung eines intra- oder extrahepatischen Cholangiokarzinoms sind:</th>
</tr>
</thead>
</table>
| 2 | • Adipositas
| | • Alkoholabusus
| | • Choledochus-Zysten
| | • Cholelithiasis
| | • Chronisch bakterielle Cholangitis
| | • Chronisch entzündliche Darmerkrankungen
| | • Chronische Hepatitis B-Virusinfektion
| | • Chronische Hepatitis C-Virusinfektion
| | • Diabetes mellitus
| | • Leberegel
| | • Leberzirrhose
| | • Nichtalkolische Fettlebererkrankung
| | • Parasitäre Cholangitiden
| | • Primär sklerosierende Cholangitis
| | • Rauchen
| | • Rezidivierende pyogene Cholangitiden |

LoE 2-3 (Oxford 2011)

Starker Konsens

[470]; [471]; [472]; [473]; [474]; [475]; [476]
Risikofaktoren für die Entwicklung eines Gallenblasenkarzinoms sind:
- Anatomische Anomalien der intra- und extrahepatischen Gallenwege
- Cholelithiasis
- Chronisch bakterielle und parasitäre Cholangitis
- Diabetes mellitus
- Gallenblasenpolypen
- Porzellangallenblase
- Primär sklerosierende Cholangitis

Cholangiokarzinome (CCA, synonym maligne biliäre Tumoren) sind eine heterogene Gruppe epithelialer Neoplasien, die meistens eine cholangiozytotypische Differenzierung aufweisen [479]. Je nach anatomischer Lokalisation des Primärtumors werden intrahepatische (iCCA) von extrahepatischen (eCCA) CCA und vom Gallenblasenkarzinom unterschieden. Extrahepatische Tumoren werden weiter in perihiläre (synonym Klatskin-Tumor, pCCA) und distale CCA (dCCA) aufgeteilt. Diese Unterscheidung ist aufgrund unterschiedlicher Risikofaktoren, Unterschiede in Bezug auf molekulare und klinische Charakteristika und unterschiedlicher Therapieansätze relevant [480], [481].

Die primäre sklerosierende Cholangitis (PSC) ist in westlichen Ländern ein relevanter Risikofaktor sowohl für intra- und extrahepatische Cholangiokarzinome als auch für
Gallenblasenkarzinome. Das kumulative 10-Jahresrisiko für ein Cholangioskarzinom bei PSC liegt bei 9 % und ist damit deutlich höher als in der Allgemeinbevölkerung [489]. Ob bei PSC-Patienten Alkoholkonsum und Nikotin weitere Ko-Risikofaktoren darstellen, ist weiter unklar. Ebenso bleibt unklar, ob eine chronisch entzündliche Darmerkrkrankung ohne Vorhandensein einer PSC einen relevanten Risikofaktor darstellt [490]. Eine Leberzirrhose, eine chronische Hepatitis-C-oder Hepatitis-B-Virusinfektion, Alkoholkonsum und Diabetes sind in westlichen Ländern wichtige Risikofaktoren für die Entwicklung eines iCCA [475], [482], [491]. Insbesondere ist das Risiko für das intrahepatische iCCA bei Diabetes und/oder Adipositas erhöht [84]. Bei nichtalkoholischer Fettleberkrankung (NAFLD) ist das iCCA-Risiko leicht erhöht [476]. Ebenso weisen Raucher ein gering erhöhtes Risiko für die Entwicklung eines intra- und extrahepatischen CCAs, jedoch nicht für ein Gallenblasenkarzinom auf [491]. Weitere etablierte Risikofaktoren sind eine Cholelithiasis und biliäre Zysten. Das höchste Risiko sowohl für die Entwicklung eines iCCA als auch eines eCCA weisen Patienten mit Choledochuszysten auf (relatives Risiko 26,7 bzw. 34,9) [492].

Ein weiterer Risikofaktor für ein Gallenblasenkarzinom ist eine chronische Entzündung, verursacht durch Salmonella typhi bzw. paratyphi oder Helicobacter bilis [478]. Eine Besiedelung der Gallenblase mit Salmonella typhi bei Dauerausscheidern ist mit einem 12-fach erhöhtem Risiko für die Entwicklung eines Gallenblasenkarzinoms assoziiert [494].

Die als klassische Präkanzerose angesehene Kalzifizierung der Gallenblasenwand, die sogenannte Porzellangallenblase, wird in der jüngeren Literatur als Risikofaktor für ein Gallenblasenkarzinom differenzierter betrachtet [496], [497]. Das relative Risiko für ein Gallenblasenkarzinom liegt bei 4,6 [498] und ist niedriger als in älteren Arbeiten angegeben [499].
4.1.2 Prophylaktische und therapeutische Maßnahmen zur Reduktion des Risikos der Entstehung von biliären Karzinomen

<table>
<thead>
<tr>
<th>4.3</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Gallenblasenpolypen bei Patienten mit PSC sollten regelmäßig sonographisch überwacht werden. In allen Fällen sollte die Indikation zur Cholezystektomie diskutiert werden, bei Polypen über 8 mm oder Größenprogredienz sollte aufgrund des erhöhten Karzinomrisikos unter Berücksichtigung der Leberfunktion eine Cholezystektomie erfolgen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Für die asymptomatische Bevölkerung ist eine CCA-Früherkennung aufgrund der niedrigen Inzidenz nicht sinnvoll.

<table>
<thead>
<tr>
<th>4.4</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit Gallenblasenpolypen ≥ 10 mm sollte unabhängig von der Symptomatik eine Cholezystektomie angeboten werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

4.1 Risikofaktoren, Prävention und Früherkennung

4.5 Konsensbasierte Empfehlung geprüft 2022

EK

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Konsensbasierte Empfehlung</td>
<td>geprüft 2022</td>
</tr>
<tr>
<td>EK</td>
<td>Bei Patienten ohne Risikofaktoren* für ein Gallenblasenkarzinom mit Nachweis eines Gallenblasenpolypen von < 9 mm sollte eine sonographische Kontrolle in 6 Monaten (Polyp 6-9 mm) bzw. 12 Monaten (Polyp < 6 mm) erfolgen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Risikofaktoren für neoplastische Polypen: Alter > 50 Jahre, bekannte PSC, Zugehörigkeit zu einer indigenen Population oder Vorhandensein eines sessilen Polypen</td>
<td></td>
</tr>
<tr>
<td>EK</td>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

4.1.3 Früherkennung

4.6 Konsensbasierte Empfehlung geprüft 2022

EK

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Konsensbasierte Empfehlung</td>
<td>geprüft 2022</td>
</tr>
<tr>
<td>EK</td>
<td>Bei Patienten mit PSC sollte halbjährlich eine Bildgebung im Rahmen der Cholangiokarzinom-Früherkennung durchgeführt werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Im Rahmen der Konsensuskonferenz wurde festgehalten, dass aufgrund der höheren Sensitivität eine Abdomensonographie im Wechsel mit einem nativen MRT inklusive MRCP erfolgen sollte. Hierbei soll sowohl die Leber als auch die Gallenblase mitbeurteilt werden.
4.2 Histopathologische und molekulare Diagnostik

4.2.1 Typisierung und Staging von biliären Karzinomen

<table>
<thead>
<tr>
<th>EK</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor oder im Rahmen einer Tumorthерапии sollen Tumoren der Gallenwege und Gallenblase histologisch oder ggf. zytologisch gesichert werden</td>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Aufgrund des Fehlens beweisender positiver bildgebender diagnostischer Kriterien ist die histologische Sicherung der intrahepatischen Cholangiokarzinome grundsätzlich erforderlich (s. Abbildung: Diagnosealgorithmus eines Patienten mit Verdacht auf ein Cholangiokarzinom). Dies ist besonders relevant, da in der Mehrzahl der Cholangiokarzinome keine spezifische chronische Vorerkrankung zugrunde liegt, sodass deren positive prädiktive Aussagekraft, anders z.B. beim HCC, nicht mit in Betracht gezogen werden kann. Dennoch treten intrahepatische Cholangiokarzinome auch bei den zum HCC prädisponierenden chronischen Lebererkrankungen und der Zirrhose vermehrt auf, sodass die Möglichkeit eines intrahepatischen Cholangiokarzinoms, auch bei bildgebendem Verdacht auf ein HCC, differenzialdiagnostisch zu berücksichtigen ist. Grund hierfür sind v.a. Fälle intrahepatischer Cholangiokarzinome, welche die bildgebenden Kriterien eines HCC zeigen können. Umgekehrt können bei einzelnen HCCs, insbesondere vom sklerotischen Subtyp, die bildgebenden Kriterien eines HCC fehlen und zum Verdacht auf ein iCCA führen.

Bei Tumoren der extrahepatischen Gallenwege kann die Sicherung eines invasiven Karzinoms in Abgrenzung von entzündlich bedingten Veränderungen und nichtinvasiven prämalignen Veränderungen problematisch sein, dies gilt besonders auch für die Abklärung dominanter Stenosen bei der PSC. Die Sensitivität histologischer und zytologischer Verfahren in der Detektion invasiver Karzinome der distalen Gallenwege ist derzeit noch begrenzt und überschreitet auch im kombinierten Einsatz gemäß der meisten Untersuchungen nicht 60-70 % [503][506]. Zusätzliche Verfahren, wie FISH-Analysen und auch molekulare Analysen am Gallesekret mögen in Einzelfällen unterstützende Informationen liefern, können aber weder die histologische oder zytologische Diagnostik ersetzen, noch kann mangels entsprechender Validierung ihr diagnostischer Einsatz derzeit generell empfohlen werden.

In Fällen einer anstehenden Resektion bei hochgradigem Verdacht auf ein Karzinom der extrahepatischen Gallenwege kann angesichts der eingeschränkten Sensitivität zytologischer und biopsicher Nachweise auf eine präoperative bioptische Sicherung zugunsten einer umfassenden Aufarbeitung des Resektionspräparates verzichtet werden, wenn die Abwägung der möglichen Vor- und Nachteile keine Verbesserung für den Patienten erwarten lässt. Die Entscheidungsfindung sollte durch ein interdisziplinäres Tumorboard abgesichert sein.

Bei nichtoperablen intra- und extrahepatischen Cholangiokarzinomen und Karzinomen der Gallenblase soll vor Einleitung einer Therapie eine histologische Sicherung erfolgen, wobei das hierbei gewonnene Gewebe in der Regel zusätzlich auch für eventuelle weiterführende, z.B. molekularpathologische Untersuchungen ausreichen sollte und hierfür bei Bedarf einzusetzen ist.
Die Typisierung der Karzinome der Gallenwege und der Gallenblase soll nach der anatomischen Lokalisation (intrahepatisch, perihilär, distale Gallenwege, Gallenblase) und gemäß der histologischen Differenzierung nach der aktuellen WHO-Klassifikation erfolgen. Bei intrahepatischen Cholangiokarzinomen sollte eine Unterscheidung von 'small duct' und 'large duct' Typ erfolgen.

Gemäß der WHO-Klassifikation (5. Auflage) ist bei iCCA ein phänotypisch den kleinen Gallengängen ähnlicher 'small duct' Typ von einem den Karzinomen der extrahepatischen Gallengänge vergleichbaren, 'large duct' Typ zu unterscheiden [93]. Beide Tumortypen sind ätiologisch, molekular, histologisch, bildgebend und klinisch in ihrer typischen Ausprägung verschieden, sodass ihre Unterscheidung von prognostischer und zunehmend auch therapeutischer Bedeutung ist (Tabelle 9: Typische Merkmale der CCA-Subtypen [93], [504], [505], [506]). Diagnostisch können beide Tumortypen histologisch und ggf. immunhistologisch oder aufgrund ihrer molekularen Eigenschaften unterschieden werden.

Tabelle 10: Typische Merkmale der CCA-Subtypen

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>Small-duct Type iCCA</th>
<th>Large-duct Type iCCA, distales CCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prädisponierende Erkrankungen</td>
<td>Chronische Hepatitis B/C, NASH, andere chronische Lebererkrankungen, (Zirrhose)</td>
<td>PSC, biliäre Helminthosen (C. sinensis, O. viverrini), Konkremente</td>
</tr>
<tr>
<td>Prämaligne Läsionen</td>
<td>unbekannt</td>
<td>BilIN, IPNB, MCN</td>
</tr>
<tr>
<td>Makroskopie</td>
<td>Primär knotenbildend (‘mass forming’)</td>
<td>Primär periduktal infiltrierend</td>
</tr>
<tr>
<td>Histologie</td>
<td>Zellreicher, weniger Stroma, kein Muzin, kohärenter wachsend</td>
<td>Tumorzellärmer, stromareich, (extrazelluläre) Muzinbildung; verstreutes Wachstum</td>
</tr>
<tr>
<td>Molekulare Veränderungen</td>
<td>FGFR2-TL, IDH1/2, BAP1, p53, KRAS ARID1A</td>
<td>KRAS, p53, ARID1B, SMAD4</td>
</tr>
<tr>
<td>System-therapeutische Zielstrukturen</td>
<td>Ergiebig; v.a. IDH1/2-Mut; FGFR2-TLs, andere TLs (incl. NTRK), BRAF-Mut; MSIhigh</td>
<td>Weniger; BRCA-1/2-Mut; Her-2-Amp; MSIhigh</td>
</tr>
</tbody>
</table>

Starker Konsens
Differenzialdiagnostisch müssen iCCAs vor allem von Metastasen extrahepatischer Karzinome in der Leber unterschieden werden. Metastasen sind in der Summe erheblich häufiger als iCCAs, so dass die möglichst sichere Unterscheidung wichtig ist. Vor allem Metastasen eines Pankreaskarzinoms aber auch anderer Karzinome (besonders Lunge, Magen, Mamma) und seltener Metastasen neuroendokriner Neoplasien sind zu berücksichtigen. Eine definitive Unterscheidung einer Lebermetastase eines exokrinen Pankreaskarzinoms (oder eines Karzinoms der extrahepatischen Gallenwege oder Gallenblase) von einem iCCA (v.a. „large duct“-Typ) ist an der Biopsie in den meisten Fällen weder histologisch noch immunhistologisch sicher möglich, so dass die Diagnose im Kontext des klinisch-bildgebenden Befundes zu stellen ist.

Ferner sollten bei gesicherter intrahepatischer Tumorlokalisation seltenere gemischte Tumorformen (gemischt neuroendokrine/nichtneuroendokrine Neoplasien (MINEN) und kombinierte Hepato-Cholangiokarzinome (c(combined) HCC/CCA)) von iCCA unterschieden werden. Das früher dem cHCC/CCA zugeschlagene Cholangiokarzinom wird aufgrund neuer molekularer Befunde [508] heute als Sonderform des iCCA klassifiziert. Solide wachsende iCCAs sind insbesondere vom sklerosierten Subtyp des HCC zu unterscheiden; hierfür sind in der Regel zusätzliche immunhistologische Untersuchungen erforderlich (s. u.). Diese Unterscheidung ist auch deshalb wichtig, da HCCs vom sklerosierten Subtyp auch bildgebend meist nicht als HCCs erkannt werden. Seltener stellen die meist als Zufallsbefunde bei Laparotomien erfassten Gallengangsadenome eine Differentialdiagnose zu kleinen hochdifferenzierten iCCA dar.

Karzinommetastasen in die distalen Gallenwege oder die Gallenblase sind extrem selten und treten nicht isoliert und nur im terminalen Krankheitsstadium auf, so dass sich diagnostisch bei gesicherter Lokalisation diese differentialdiagnostische Frage nicht stellt. Hier müssen die Karzinome ggf. von seltenen neuroendokrinen Neoplasien, mesenchymalen und neuroektodermalen Tumoren unterschieden werden [509].

4.2.2 Zytologische und histopathologische Untersuchungen zur Diagnostik eines CCA, eines Gallenblasenkarzinoms

<table>
<thead>
<tr>
<th>4.9</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Bearbeitung und Befundung eines Resektats soll die Ausdehnung des Tumors (Staging) gemäß der aktuellen TNM-Klassifikation, seinen Typ (Typing) und Differenzierungsgrad (Grading) und den Status des Resekttarandes (R-Klassifikation) sowie bei intrahepatischen Cholangiokarzinomen den Status der nichttumorösen Leber ermitteln. Bei Präparaten mit prämalignen Läsionen soll durch genaue Aufarbeitung ein möglicher Übergang in ein invasives Karzinom abgeklärt werden.</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das pathohistologische Staging eines Karzinoms der Gallenwege hat unabhängige prognostische Bedeutung und erfolgt gemäß der geltenden TNM-Klassifikation (derzeit 8. Auflage), wobei für alle vier anatomischen Lokalisationen (intrahepatisch, perihilär, distal, Gallenblase) eigene TNM-Klassifikationen existieren [510]. Zusätzlich zu den Hauptkriterien, sollten auch die Nebenkriterien Lymphgefäßeinbruch (L), Veneneinbruch (V) und vor allem bei perihilären und distalen Cholangiokarzinomen auch die Nervenscheideninfiltration (Pn) beurteilt werden. Bezüglich des Typings sollte die aktuelle WHO-Klassifikation Berücksichtigung finden [93], [507]. Das Typing hat
prognostische und in einem Teil der Fälle (siehe z. B. molekulare Diagnostik und gezielte Therapiesätze) prädiktive Bedeutung. Die prognostische Bedeutung des Gradienings ist nach bisherigen Daten gering; es existiert kein uniform akzeptiertes, spezifisches Gradingschema für die einzelnen Cholangiokarzinomtypen und -lokalisationen, sodass das allgemeine UICC-Gradingschema [510], ggf. gemäß der Anweisungen der Arbeitsgemeinschaft Deutscher Tumorzentren [511], angewandt werden sollte. Insbesondere extrahepatische Cholangiokarzinome neigen, vergleichbar zu exokrinen Pankreaskarzinomen zu periduktaler, lymphangischer, perineuraler und vereinzelt auch diskontinuierlich erscheinender Ausbreitung, sodass an eine in-sano-Resektion und die entsprechende histologische Aufarbeitung der gesamten Resektionsränder eine hohe Anforderung besteht. Es wird daher wegen der Bedeutung für die Tumorrekurrenz empfohlen, den genauen Abstand zum Resektionsrand (in mm) anzugeben und hierbei die ‘R0 wide’ Definition (1mm) zu beachten.

Biliäre intraepitheliale Neoplasien (BilIN), intraduktale papilläre Neoplasien der Gallenwege (IPNB), Muzinos-zystische Neoplasien (MCN) und Adenofibrome sind benigne Läsionen, die ein unterschiedlich hohes, jedoch signifikantes, malignes Entartungspotenzial in ein Cholangiokarzinom aufweisen. Bei Vorliegen einer derartigen prämalignen Läsion ist der Dysplasiegrad (niedrig, hoch) anzugeben und durch eine entsprechend ausreichende makroskopische und histologische Aufarbeitung der Übergang in ein invasives Karzinom auszuschließen.

Auch wenn sich bei der Mehrzahl der Cholangiokarzinome keine prädisponierende Grunderkrankung eruieren lässt, bedingen chronische Lebererkrankungen und die Zirrhose, vergleichbar dem HCC, ein erhöhtes Risiko auch an einem iCCA zu erkranken. Ferner kann der Status der nichttumorösen Leber ggf. Prognose und Therapie beeinflussen und sollte daher, wenn immer er ausreichend beurteilbar ist, diagnostisch festgehalten werden.

4.10 Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Diagnose eines Cholangiokarzinoms kann bei klarer Konstellation durch die konventionelle Histologie gestellt werden. In unklaren Fällen, insbesondere bei intrahepatischen Tumoren, soll die Diagnose durch geeignete immunhistologische und oder molekularpathologische Untersuchungen abgesichert werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die Immunhistologie kann die Diagnose eines Cholangiokarzinoms unterstützen, wobei es keine beweisende (liniendefinierende) immunhistologische Markerkonstellation gibt. Die Positivität für K7, K19 und Ca19-9 legt eine pankreato-biliäre (d. h. eine dem
4.2 Histopathologische und molekulare Diagnostik

exokrinen Pankreas und den Gallenwegen entsprechende) Differenzierung in der Unterscheidung von Metastasen anderer extrahepatischer Primärtumoren nahe. Ansonsten sollten die entsprechenden immunhistologischen linientypischen Nachweise der in Frage kommenden Differentialdiagnosen (bei HCC z.B. HepPar1, Arginase 1; bei anderen Adenokarzinomen die für sie typischen immunhistologischen Marker) eingesetzt werden. Sollte bei einem iCCA die Unterscheidung eines „large duct“-Subtyps von einem „small duct“-Subtyp histologisch nicht mit der gebotenen Sicherheit möglich sein, können Spezialfärbungen (Muzin-Produktion), Immunhistologie und in Ausnahmefällen auch die Molekularpathologie eine definitive Zuordnung ermöglichen.

4.2.3 Molekulare Diagnostik

<table>
<thead>
<tr>
<th>4.11</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Cholangiokarzinome weisen potenzielle Zielstrukturen für eine molekular gesteuerte Systemtherapie auf, die im geeigneten Kontext getestet werden sollten.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Wir möchten an dieser Stelle zur detaillierten Aufarbeitung auf die S1-Leitlinie "Tumorgenetik – Diagnostik im Kontext maligner Erkrankungen" verweisen.
Tabelle 11: Molekulare Alterationen beim small duct iCCA

<table>
<thead>
<tr>
<th>Molekulare Alteration</th>
<th>Häufigkeit (%)</th>
<th>Zulassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS-Mutation</td>
<td>10–20</td>
<td></td>
</tr>
<tr>
<td>TP53-Mutation</td>
<td>20–30</td>
<td></td>
</tr>
<tr>
<td>FGFR2-Translokation</td>
<td>15–30</td>
<td>Zulassung</td>
</tr>
<tr>
<td>IDH1/2</td>
<td>10–20</td>
<td>Zulassung außerhalb der EU</td>
</tr>
<tr>
<td>ARID1A</td>
<td>5–15</td>
<td></td>
</tr>
<tr>
<td>BAP1</td>
<td>5–15</td>
<td></td>
</tr>
<tr>
<td>BRAF V600E</td>
<td>3–6</td>
<td>Zulassung bei anderer Entität</td>
</tr>
<tr>
<td>ERBB2</td>
<td>2–3</td>
<td>Zulassung bei anderer Entität</td>
</tr>
<tr>
<td>MSI-H (MLH1, MSH2, MSH6, PMS2)</td>
<td>1–2</td>
<td>Zulassung außerhalb der EU</td>
</tr>
<tr>
<td>NTRK1-3</td>
<td><1</td>
<td>Zulassung</td>
</tr>
<tr>
<td>NRG1</td>
<td><1</td>
<td>Zulassung bei anderer Entität</td>
</tr>
</tbody>
</table>
4.3 Bildgebende und endoskopische Diagnostik

4.3.1 Bildgebende und/oder endoskopische Untersuchungen zum Staging und zur Diagnosestellung eines biliären Karzinoms

Die abdominelle Sonographie wird meist initial eingesetzt zur Abklärung erhöhter Leberwerte und ist in Endemiegebieten Südostasiens Methode der Wahl zum jährlichen Screening auf biliäre Karzinome [512]. Das intrahepatische CCA ist meist iso- bis hypoechogen, gelegentlich ist zusätzlich oder bei periduktal infiltrierendem Tumorwachstum als alleiniges Merkmal eine umschriebene Gangdilatation stromaufwärts des iCCA darstellbar. In der Kontrastmittelsonographie (CEUS) ist das Hyperenhancement uneinheitlich und abhängig von Tumorzelldichte und Fibrose des Tumors sowie Entzündung und Fibrose in der umgebenden Leber [513], [514]. In einer DEGUM-Multizenterstudie zeigte sich eine in der Tumorperipherie betonte initiale Kontrastmittelanflutung bei 75 % der iCCA, mit früh-portalvenöser Auswaschung vor allem im Tumorzentrum bei 85,8 % und Auswaschung in der Spätphase bei 92,9 % [515]. Das iCCA zeigt im Unterschied zum HCC häufig ein früh (< 60 Sekunden) beginnendes, deutlich ausgeprägtes Auswaschen. In älteren Studien war die Pfortaderinfiltration mit hoher Genauigkeit darstellbar [516]. Die Darstellung von Gallenblasenpolypen gelingt mit dem Ultraschall mit relativ hoher Genauigkeit, die Differenzierung von malignen und nichtmalignen Polypen wird in einem 2018 publizierten Cochrane-Review mit einer Sensitivität von 0,79 und Spezifität von 0,89 angegeben [517].

Neben der mittels Ultraschalles geäußerten Verdachtsdiagnose auf ein iCCA handelt es sich auch oft um einen Zufallsbefund in aus anderen Gründen durchgeführten bildgebenden Untersuchungen. Die bildgebenden Merkmale der iCCA sind oft suggestiv für die Diagnose, aber nicht definitiv genug, um eine Biopsie überflüssig zu machen (siehe Abbildung: Diagnosealgorithmus eines Patienten mit Verdacht auf ein cholangiozelluläres Karzinom).

Ein typisches kontrastverstärktes CT-Protokoll für die Diagnose und das initiale Staging eines Cholangiokarzinoms umfasst eine arterielle Phase (20-30 Sekunden nach der Injektion), eine portalvenöse Phase (60 Sekunden nach der Injektion) und eine Spätphase (mindestens 3 Minuten nach der Injektion) [518], [519], [520]. CT-morphologisch ist das typische Erscheinungsbild eine hypodense Leberraumforderung mit unregelmäßigen Rändern in der nativen Phase, einem hypervaskulären Saum in der arteriellen Phase und ein zunehmendes Enhancement in der venösen Phase und den Spätphasen [521]. Mittels CT kann auch der Grad der bilären Obstruktion, der Kapselretraktion oder der hepatischen Atrophie erkannt werden. Die dynamische CT-Untersuchung kann bei der Unterscheidung zwischen iCCA und HCC helfen. Bis zu 81 % der iCCA sind durch eine progressive Kontrastmittelaufnahme von der arteriellen zur venösen Phase und insbesondere in der Spätphase gekennzeichnet. Dieser Effekt kann auf eine Fibrose zurückzuführen sein, die das intravenöse Kontrastmittel zurückhält. Im Gegensatz dazu ist das HCC durch eine arterielle Hypervaskularisation während der arteriellen Phase und...
einem Auswaschen in der venösen Phase oder in der Spätphase charakterisiert. Einige kleine iCCA können aber auch eine arterielle Hypervaskularisation aufweisen und kön- nen hierdurch ein Hepatozelluläres Karzinom imitieren [522], [523]. Die arterielle Phase hilft nicht nur bei der diagnostischen Unterscheidung zwischen einem HCC und einem iCCA sondern auch bei der klareren Abgrenzung der vaskulären Anatomie vor der chirurgischen Resektion [518], [519], [520].

Im Vergleich zur MRT ist die kontrastverstärkte CT nur begrenzt in der Lage, die Aus- breitung des Tumors entlang der Gallengänge zu erkennen [524]. Die MRT zeichnet sich bei dieser Aufgabe durch ihren überlegenen Weichteikontrast aus und gilt daher als das bildgebende Verfahren der Wahl für die Diagnose und das lokale Staging des Cholangiokarzinoms. Ihre Genauigkeit ist vergleichbar mit der Genauigkeit der kon- trastverstärkten CT und der direkten Cholangiographie in Kombination [524]. Ein opti- males Protokoll für die Beurteilung von Cholangiokarzinomen sollte MRCP, konventio- nelle T1- und T2-gewichtete abdominalle MRT-Sequenzen (einschließlich T1 „in- und out-of-phase“ Bildgebung), diffusionsgewichtete Bildgebung (DWI) und mehrphasige kontrastverstärkte Sequenzen in der arteriellen, portalen, venösen und verzögerten Phasen beinhalten [520], [524]. Die dynamischen Sequenzen können zu vorher festge- legten Zeitpunkten oder mittels Bolus-Tracking-Technik angefertigt werden [520]. In der MRT erscheinen iCCA in nativen T1-gewichteten Sequenzen hypointens und auf T2-gewichteten Sequenzen hyperintens [525], [526], [527]. In T2-gewichteten Bildern kann sich auch eine zentrale Hypointensität zeigen, die einem Fibrosegebiet entspricht. Dy- namische kontrastverstärkte Sequenzen zeigen eine periphere Hyperintensität in der arteriellen Phase, gefolgt von einer progressiven und konzentrischen Auffüllung des Tumors mit Kontrastmittel. Das Kontrastmittelpooling in der Spätphase ist ein Hinweis auf eine Fibrose und deutet auf ein iCCA hin.

Die Magnetresonanztomographie mit Cholangio-Pankreatographie (MRT/MRCP) ist hilf- reich, um das Gallengangssystem und die Gefäßstrukturen zu visualisieren und dadurch die anatomische Ausdehnung des Tumors genauer zu bestimmen. Die MRCP ist eine kontrastfreie MR-Technik. Hierbei wird der T2-gewichtete Kontrast zwischen Galle (langes T2) und angrenzendem Gewebe (kurzes T2) durch die Verwendung stark T2-gewichteter Sequenzen akzentuiert. Die dünne Multi-Slice-MRCP ermöglicht eine hochauflösende Visualisierung über dreidimensionale Bilddatensätze [524]. Im Gegensatz zur endoskopischen retrograden Cholangiopankreatographie ist die MRCP nichtinvasiv und erlaubt die Visualisierung der Gallenwege proximal einer Obstruktion [520]. In Vorbe- reitung auf die MRCP sollen die Patienten mindestens 4 Stunden lang fasten, um die Darmperistaltik und Magensekretion zu minimieren und die Gallenblasenaktfreibung zu maximalisieren. Negative Kontrastmittel können hinzugefügt werden, um das Flüssig- keitssignal im Magen und Zwölffingerdarm zu reduzieren. Die DWI kann die MRCP bei der Erkennung von Tumoren in erweiterten oder verschlossenen Gallengängen unter- stützen, wenn eine Kontrastmittelinkjektion nicht möglich ist [524]. Es ist gut dokumen- tiert, dass die DWI die diagnostische Sensitivität der MRT für das Cholangiokarzinom erhöht. Frühere Studien haben eine Überlappung der dynamischen Kontrastverstär- kungsmuster von kleinen raumfordernden intrahepatischen Cholangiokarzinomen (< 3 cm) und Hepatozellulären Karzinomen dokumentiert [506], [512], [528], [529]. In sol- chen Fällen kann eine diffusionsgewichtete Bildgebung, die bei einer Anzahl verschie- dener b-Werte im Bereich von 0- 800 s/mm² durchgeführt wird, helfen, das iCCA von HCC zu unterscheiden [530], [531], [532], [533]. In ähnlicher Weise kann die DW-MRT helfen, benigne von malignen Strukturen zu unterscheiden, was für die Diagnose peri- duktal infiltrierender Subtypen des iCCAs von entscheidender Bedeutung ist [520], [534]. Im Allgemeinen tendieren die ADC-Werte von iCCAs dazu, signifikant niedriger zu sein als die des benachbarten normalen Leberparenchym, wie es bei den meisten
Die Rolle der 18F-FDG-PET bei der Diagnose und dem Staging von Patienten mit iCCAs wurde bis dato kontrovers diskutiert. In einer neuen Metaanalyse wurde die Rolle der 18F-FDG-PET für Staging und Re-Staging bei insgesamt 2125 Patienten aus 47 Studien untersucht [538]. Die Sensitivität und Spezifität der 18F-FDG-PET in der Initialdiagnose betrug je 91,7 % (95% CI: 89,8; 93,2) bzw. 51,3 % (95% CI: 46,4; 56,2); für einen Lymphknotenbefall lag die Sensitivität bei 88,4 % (95% CI: 82,6; 92,8) und die Spezifität bei 69,1 % (95% CI: 63,8; 74,1); für das Vorliegen von Fernmetastasen lag die Sensitivität bei 85,4 % (95% CI: 79,5; 90,2) und die Spezifität bei 89,7 % (95% CI: 86,0; 92,7). Bei einem Verdacht auf ein Rezidiv betrug die Sensitivität 90,1 % (95% CI: 84,4; 94,3) und die Spezifität 83,5 % (95% CI: 74,4; 90,4). Somit weisen diese aktualisierten Daten darauf hin, dass der Einsatz von 18F-FDG-PET für das Staging (Lymphknoten und Fernmetastasen) und die Identifizierung von Rezidiven bei selektierten Patienten mit CCA für die Therapiestatifizierung sinnvoll sein kann, insbesondere wenn die Identifizierung okkunder Krankheitsherde das therapeutische Vorgehen verändern würde oder wenn die Diagnose eines Rezidivs nach der Standard-Bildgebung weiterhin unklar bleibt. Insofern
kann der Einsatz der 18F-FDG-PET bei CCA nach interdisziplinären Tumorboardempfehlung für Staging und Re-Staging indiziert sein.

4.3.2 Untersuchungsmethoden zur Darstellung der maximalen Ausbreitung des Tumors

<table>
<thead>
<tr>
<th>4.14</th>
<th>Konsensbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Für die Erfassung der maximalen Ausbreitung des Tumors inklusive Gefäßinvasion soll, wenn eine kurative Behandlungsoption besteht, mindestens ein dynamisches kontrastverstärktes MRT eingesetzt werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Insbesondere vor kurativen Resektionen oder minimalinvasiven interventionellen Therapien sind eine exakte Erfassung der maximalen Ausbreitung des Tumors sowie der Bezug zu allen anatomisch wichtigen Strukturen unerlässlich.

Die MRT zeichnet sich bei dieser Aufgabe durch ihren überlegenen Weichteikontrast aus und gilt daher als das bildgebende Verfahren der Wahl für die Diagnose der maximalen Ausdehnung des Cholangiokarzinoms [524]. Ein optimales Protokoll für die Beurteilung der maximalen Ausdehnung des Cholangiokarzinomen sollte MRCP, konventionelle T1- und T2-gewichtete abdominal MRT-Sequenzen (einschließlich T1 „in- und out-of-phase“ Bildgebung), diffusionsgewichtete Bildgebung (DWI) und mehrphasige kontrastverstärkte Sequenzen in der arteriellen, portalen, venösen und verzögerten Phase beinhalten [520], [524]. Für die weiteren Details siehe bitte auch das Kapitel „Welche bildgebenden und/oder endoskopischen Untersuchungen müssen zum Staging und zur Diagnose eines biliären Karzinoms durchgeführt werden?“. Neben dem Einsatz der MRCP und diffusionsgewichteter MRT-Sequenzen kann die Nachkontrastdarstellung mit traditionellen, extrazellulären Kontrastmitteln auf Gadoliniumbasis (Gd-DTPA) oder Derivaten wie Gadoliniummethoxybenzyldiethylentriamin-Penta-Essigsäure (Gd-EOB-DTPA) genauere Informationen bezüglich der Tumorausdehnung liefern.

verminderte Signalintensität der Hintergrundleber und eine verringerte Sichtbarkeit der Gallenwege in der hepatobiliären Phase weisen auf eine gestörte Gallenfunktion hin und korrelieren quantitativ mit dem Gesamtbilirubinspiegel und könnten somit ein ergänzender Leberfunktionsparameter vor ausgedehnten Resektionen sein [539].

4.3.3 Diagnostikalgorithmus

<table>
<thead>
<tr>
<th>4.15</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
<td>Bei Verdachtsdiagnose auf ein Cholangiokarzinom soll eine Schnittbildgebung zur Beurteilung der Tumorausdehnung verwendet werden.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>1</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Abbildung 5: Diagnosealgorithmus eines Patienten mit einem Verdacht auf ein Cholangiokarzinom
Endoskopische Diagnostik

Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Der endoskopische Ultraschall kann zur Diagnose, lokalem Staging und Gewebe-gewinnung beim biliären Karzinom verwendet werden.</td>
</tr>
</tbody>
</table>

Level of Evidence

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[541]</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die endosonographiegestützte Feinnadelaspirationszytologie (EUS-FNA) hatte in einer Metaanalyse von 6 Studien, die z.T. auch PSC-Patienten einschlossen, eine Sensitivität von 66 % und eine Spezifität von 100 % für die Diagnose eines CCA [532]. Auch bei Fehlen einer Läsion in der Schnittbildgebung konnte noch eine Sensitivität von 45 % erreicht werden. Bei Patienten mit negativer Bürstenzytologie konnte aus drei Studien eine Sensitivität von 59 % (Spezifität 100 %) errechnet werden. Damit ist die EUS-FNA eine valide Methode auch und insbesondere dann, wenn eine histologische Bestätigung erforderlich ist. Einschränkend sei eine Studie erwähnt, bei der von 191 Patienten i.R. eines neoadjuvanten Therapieprotokolls vor Lebertransplantation bei 16 eine perkutane (n = 13) oder EUS-gesteuerte (n = 3) Gewebegewinnung erfolgte [542]. Bei fünf von sechs Patienten mit definitiv maligner Histologie traten peritoneale (Stichkanal-)Metastasen auf (die Verteilung perkutan vs. EUS-FNA ist nicht aufgeführt, vs. 14/175 ohne Biopsie). Dies konnte in einer jüngeren Studie an 150 Patienten, von denen 61 präoperativ EUS-gesteuert biopsiert worden waren, nicht nachvollzogen werden [543].

Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenn im Rahmen einer ERCP der V.a. ein extrahepatisches Cholangiokarzinom gestellt wird, sollte im Rahmen einer ERCP eine Zangenbiopsie oder eine Bürstenzytologie entnommen werden.</td>
</tr>
</tbody>
</table>

EK

Die endoskopische Bürstenzytologie während der ERC hat in verschiedenen Studien eine Sensitivität von 30-78 % [544], [545], [546] (Anm: Review, höchste und niedrigste Sensitivität, bei gleichen Werten jeweils neueste) und eine Spezifität von 90-100 % [547], [548]. Der positive Prädiktivwert lag bei 94-100 %, der negative Prädiktivwert jedoch nur bei 8-62 % [548], [549]. In einer Metaanalyse zu Studien, die die Bürstenzytologie und die transpapilläre Biopsie verglichen, betrug die kombinierte Sensitivität und Spezifität der Bürstenzytologie zur Diagnose einer malignen Gallengangstenose 45 % (95% CI: 40-50%) und 99 % (98-100 %) [506]. Bei Patienten mit PSC war in einer Metaanalyse zu 11 retrospektiven und prospektiven Studien mit insgesamt 747 Patienten die Sensitivität der Bürstenzytologie für ein CCA 43 % (35-52 %), die Spezifität 97 % (95-98 %) [550]. Damit sichert die Bürstenzytologie im Falle eines Nachweises die Diagnose eines biliären Karzinoms, ist jedoch bei negativer Histologie nicht zum Ausschluss eines biliären Karzinoms geeignet.
Die endobiliäre, transpapilläre Zangenbiopsie während der ERC hat in verschiedenen Studien eine Sensitivität von 29-81 % [544], [551], [552] und eine Spezifität von 90-100 % [553], [554]. Der positive Prädiktivwert lag bei 94-100 % [553], [554], der negative Prädiktivwert jedoch nur bei 31-81 % [553], [554].

In der bereits oben aufgeführten Metaanalyse [506] war die kombinierte Sensitivität und Spezifität der transpapillären Biopsie zur Diagnose einer malignen Gallengangsstenose 48,1 % (95% CI: 42,8-53,4 %) und 99,2 % (97,6-99,8 %), lag somit geringgradig höher als die der Bürstenzytologie. Die diagnostische Genauigkeit ist für CCAs etwas höher als für das Pankreaskarzinom, am ehesten aufgrund des oberflächlichen, somit besser zugänglichen Tumorwachstums des CCA. Ähnlich wie für die Bürstenzytologie gilt für die Zangenbiopsie, dass bei positiver Histologie die Diagnose eines biliären Karzinoms zwar gesichert ist, bei negativer Histologie jedoch nicht ausgeschlossen werden kann. Gallengangsperforationen durch die Zangenbiopsien wurden beschrieben [555], [556], jedoch insgesamt nur selten berichtet.

Die Kombination von Bürstenzytologie und transpapillärer endobiliärer Zangenbiopsie wurde in 6 Studien untersucht [506]. Sie kann die Sensitivität der Diagnose einer malignen Struktur mit einer kombinierten Sensitivität von 59,4 % (53,7-64,8 %) erreichen, die Spezifität bleibt hoch (100 % (98,8-100,0 %)). Somit wird die diagnostische Genauigkeit durch die Kombination beider Verfahren für die Histologiegewinnung gesteigert, jedoch nicht in dem Maße, dass ein Ausschluss eines Karzinoms durch die Histologie in sicherer Weise möglich ist.

4.18 Evidenzbasiertes Statement

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Evidenzbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bei V.a. ein extrahepatisches Cholangiokarzinom kann durch Einsatz der Cholangioskopie in Kombination mit visuell gezielter Biopsie die Sensitivität der Diagnose gesteigert werden.</td>
<td>[557]</td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Die meisten Studien zum Einsatz der Cholangioskopie verwendeten die Single-Operator-Cholangioskopie (mit SpyGlass®). In einer systematischen Übersicht [557] wurden insgesamt 10 Studien identifiziert, die die Cholangioskopie mit visuell-endoskopisch gezielter Biopsieentnahme bei Gallengangsstrikturen evaluierten. Die kombinierte Sensitivität der so gewonnenen Histologie zur Diagnose maligner Strukturen war 60,1 % (95% CI: 54,9-65,2 %) bei einer Spezifität von 98,0 % (96,0-99,0%). Etwas bessere Werte ergaben sich, wenn nur die Biopsien bei CCA ausgewertet wurden (Sensitivität 66,2 % (59,7-72,3 %), Spezifität 97,0 % (94,0-99,0 %)).

Die Hinzunahme des visuell-endoskopischen Eindrucks konnte die Sensitivität erheblich steigern (84,5 % (79,2-88,9 %)), allerdings zulasten der Spezifität (82,6 % (77,1-87,3 %)). Letztlich sind die endoskopischen Kriterien für Malignität nicht abschließend bewertbar, insbesondere vor dem Hintergrund entzündlicher Veränderungen (z.B. bei PSC). Interessant ist der Einsatz der Cholangioskopie bei Strikturen mit zuvor nicht eindeutiger Histologie durch Bürste u./o. Biopsie: Hier konnte dennoch mit einer Sensitivität von 67,3 % (52,5-80,1 %) und Spezifität von 93,3 % (83,1-98,7 %) ein CCA diagnostiziert werden. Bei direktem Vergleich zwischen Bürstenzytologie, Zangenbiopsie und
4.19 Konsensbasierte Empfehlung

Konsens

Zur Überwachung von Patienten mit PSC darf auf die „S2k-LL Autoimmune Lebererkrankungen“ [501] der DGVS verwiesen werden, die schreibt: „Die Unterscheidung der benignen von der malignen Stenose ist eines der klinisch relevantesten Probleme bei Patienten mit PSC. Es sollten möglichst verschiedene Verfahren angewendet werden, um den Verdacht eines CCA weitestgehend zu bestätigen oder auszuschließen. Eine Cholangioskopie wird von einigen Zentren insbesondere zur gezielten Gewebeentnahme favorisiert. Auch eine Wiederholung bereits erfolgter Untersuchungen erzielt in manchen Fällen eine Diagnosesicherung.“ Eine ausführliche Aufstellung zur Genauigkeit der Bürstenzytologie zur Diagnose des CCA bei Patienten mit PSC in Einzelstudien und in Reviews findet sich außerdem in der ESGE-Leitlinie „Role of Endoscopy in Primary Sclerosing Cholangitis“ [559] (Tabellen 6+7), zusammenfassend s. unter Kapitel Bürstenzytologie. Interessant ist, dass in einer deutschen Studie bei Patienten mit PSC diejenigen Patienten, die eine regelmäßige Dilatation dominanter Stenosen erhielten, mit 5,3 % (n = 7) zwar nicht signifikant (p = 0,1), aber möglicherweise doch relevant seltener ein CCA entwickelten als die Patienten, die nur bei Beschwerden dilatiert wurden, mit 9,8 % (n = 15) [536]. Ob dies ein Effekt der verminderten Anzahl von Cholangitis-Episoden ist (im Sinne einer Unterbrechung der Inflammations-Karzinom-Sequenz), muss abgewartet werden.
Bei hochgradigem Verdacht auf ein biliares Karzinom (iCCA, pCCA, dCCA) und als resektabel eingeschätztem Befund muss eine histologische Sicherung nicht regelhaft präoperativ erfolgen, da ein fehlender Tumornachweis in der Histologie/Zytologie aufgrund der niedrigen Sensitivität das therapeutische Vorgehen nicht verändert. Häufig wird die Erstdiagnose eines pCCA oder dCCA bei der ERC zur Ableitung bei Cholestase gestellt, dann kann ggf. eine Bürstenzytologie u./o. Zangenbiopsie zur Histologiegewinnung eingesetzt werden. Sensitivität und Spezifität der Verfahren zur histologischen Sicherung in Studien war in hohem Maße abhängig von der Prätestwahrscheinlichkeit der Studienpopulation (z.B. PSC- vs. non-PSC-Patienten, Patienten mit unklarer Striktur vs. Patienten mit jeglicher Striktur, symptomatische vs. asymptomatische Striktur, nur dCCA vs. dCCA und Papillen- und Pankreaskarzinom). Bei unklaren Befunden kann die Cholangioskopie mit endoskopisch-visuell gezielter Biopsieentnahme eingesetzt werden, die die diagnostische Ausbeute erhöht (s.u.).

Bei Verdacht auf IgG4-assoziierte Cholangitis kann die bioptische Sicherung die probatorische Einleitung einer spezifischen Therapie begründen. Bei Patienten mit PSC empfiehlt die DGVS-Leitlinie „Autoimmune Lebererkrankungen“ bei dominanten Stenose eine histologische Sicherung, bei weiterhin bestehendem Verdacht auf ein CCA trotz negativer Histologie eine kurzfristige Reevaluation [501]. Vor Einleitung einer palliativen Chemotherapie ist die histologische Sicherung der Tumorentität erforderlich, die im Rahmen einer ERC oder durch perkutane oder endosonographische Punktion erfolgen kann (s.u.). Ob in Zukunft der Einsatz neoadjuvanter (Chemo-)Therapieansätze häufiger eine histologische Sicherung auch bei resektabel Befund erforderlich machen wird, bleibt aktuell ebenso spekulativ wie das Potenzial repetitiver Biopsien zur Identifikation eines molekular gestützten Therapieansatzes in der palliativen Situation.

Hinsichtlich der histopathologischen Sicherung s. auch das Kapitel „Histopathologische und molekulare Diagnostik“.
4.4 Operative und interventionelle Therapieverfahren

4.4.1 Resektion

<table>
<thead>
<tr>
<th>4.20</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Resektion eines pCCA, dCCA oder iCCA soll erfolgen, wenn eine komplette Resektion (R0-Resektion) möglich erscheint.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die radikale chirurgische Entfernung allen Tumorgewebes stellt gegenwärtig die einzige kurative Behandlung des nicht fernmetastasierten iCCA und pCCA dar. Multifokalität (bei iCCA), Lymphknotenmetastasen (N1) und eine Gefäßinvasion sind die wichtigsten prognoserelevanten Faktoren, stellen jedoch keine Kontraindikation dar, sofern eine R0-Resektion erreichbar scheint [560], [561], [562], [563], [564], [565], [566]. Häufig erfordert die chirurgische Behandlung von iCCA und pCCA ausgedehnte Leberresektionen [567], [568], [569]. Postoperativ sollte eine adjuvante Therapie erfolgen (siehe BILCAP-Studie (Capecitabine compared with observation in resected biliary tract cancer)) [570]. Bei initial irresektablem oder sogenanntem borderline-resektablem iCCA kann nach einer Downsizing Therapie eine Resektion erwogen werden [571].

<table>
<thead>
<tr>
<th>4.21</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Resektion eines Gallenblasenkarzinoms soll erfolgen, wenn klinisch keine Fernmetastasen vorliegen (cM0) und eine komplette Resektion (R0-Resektion) möglich erscheint.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die langfristige Prognose des Galleblasenkarzinoms ist insgesamt sehr schlecht, mit einer 5-Jahre-Überlebensrate zwischen 5-15 %. Wenn der Krebs jedoch in einem frühen Stadium erkannt und angemessen behandelt wird, können 5-Jahres-Überlebensraten von 75 % erreicht werden [572], [573]. Es besteht ein internationaler Konsens darüber, dass die R0-Resektion der stärkste prognostische Faktor für das Langzeitergebnis und die Heilungschancen bei Patienten mit Gallenblasenkarzinom ist [573]. In diesem Zusammenhang bestimmt die Tiefe der Invasion durch die Gallenblase die chirurgische Standardbehandlung des Gallenblasenkarzinoms [572], [573], [574].

Bei Tis- und T1a-Tumoren ist eine Cholezystektomie ohne weitere Resektion erforderlich [573]. Beim Gallenblasenkarzinom der Kategorie ab T1b ist eine zusätzliche Leberresektion mit systematischer Lymphadenektomie indiziert, sofern der Patient für die Operation geeignet ist. Sowohl die Gallenblasenbetroffene, als auch die Segmente- resektion IVb und V sind ein onkologisch akzeptables Verfahren, vorausgesetzt, es wird eine R0-Resektion durchgeführt. Eine erweiterte Hepatektomie ist in der Regel bei Patienten mit lokal fortgeschrittenem Tumor mit bilärer und vaskulärer Beteiligung erforderlich, um eine R0-Resektion zu erreichen [572], [573].

Eine routinemäßige Resektion der Hauptgallengänge ist weder indiziert noch empfohlen, da sie die postoperative Morbidität erhöht, die Anzahl der entfernten Lymphknoten
nicht erhöht und nicht mit einer Verbesserung des Gesamtüberlebens assoziiert ist. Eine Gallengangsresektion ist nur in Fällen indiziert, in denen ein positiver zystischer Ductusrand zum Zeitpunkt der ursprünglichen Resektion beseitigt werden muss, bei Gallenblasenkrebs mit direkter Infiltration des hepatoduodenalen Ligaments und in Fällen mit intensiver postoperativer Fibrose mit signifikanter Lymphadenopathie des hepatoduodenalen Ligaments, um eine adäquate Lymphadenektomie zu ermöglichen [573].

4.22 Konsensbasierte Empfehlung geprüft 2022

| EK | Wird bei einer Cholezystektomie intra- oder postoperativ ein Carcinoma in situ (Tis) oder ein Mukosakarzinom (T1a) festgestellt, sollte bei Vorliegen einer R0-Situation (D. cysticus) keine Nachresektion erfolgen. |
| | Starker Konsens |

Das inzidentelle Gallenblasenkarzinom ist definiert als ein Karzinom, das bei der histologischen Untersuchung der Probe nach Standard-Cholezystektomie entdeckt wird, da frühe Gallenblasenkarzinome keine spezifischen Symptome aufweisen. Das inzidentelle Gallenblasenkarzinom repräsentiert etwa 70 % der Gallenblasenkarzinome in nichtendemischen Gebieten und tritt zwischen 0,2 % und 3 % der Patienten auf, die sich einer Cholezystektomie unterziehen.

Ein Gallenblasenkarzinom der Kategorie T1a ist definiert als Karzinom, das auf die Schleimhaut beschränkt ist, und T1b als Karzinom, das auf die Muscularis-Schleimhaut beschränkt ist. Patienten mit einem auf die Schleimhaut beschränkten Karzinom (T1a oder weniger) zeigten 5-Jahres-Überlebensraten von bis zu 100 % nach alleiniger Cholezystektomie. Deshalb wird bei Patienten mit inzidentellem Gallenblasenkarzinom der Kategorie Tis und T1a eine einfache Cholezystektomie empfohlen. Eine erweiterte Resektion ist nicht erforderlich. [572], [573], [575].

4.23 Konsensbasierte Empfehlung geprüft 2022

| EK | Bei intra- oder postoperativem Nachweis eines Gallenblasenkarzinoms der Kategorie ≥ T1b, soll bei kurativer Ansatz eine onkologische Resektion oder Nachresektion erfolgen. |
| | Starker Konsens |

Aktuelle Leitlinien für die Behandlung von inzidentellen Gallenblasenkarzinomen empfehlen eine Nachresektion bei T1b-, T2- und T3-Läsionen, es sei denn, dies ist durch
eine fortgeschrittene Erkrankung oder einem schlechten Allgemeinzustandes des Patienten kontraindiziert [573], [576].

Es besteht Konsens, dass die R0-Resektion der stärkste prognostische Faktor für das Langzeitergebnis und die Heilungschancen bei Patienten mit Gallenblasenkarzinom ist [573], [577]. Diesbezüglich zeigten Lee et al. in einer multivariaten Analyse bei Patienten mit einem T1b-Tumor, dass die R1/R2-Resektion und die Lymphknotenmetastasierung eine schlechte Prognose signifikant vorhersagten, wobei die 1-Jahres-Überlebensrate bei T1b-Tumoren, die sich keiner radikalen Exzision unterziehen, auf 50 % sank [578].

Die Reoperation sollte so früh wie möglich durchgeführt werden, sobald das endgültige histopathologische Staging vorliegt, die Metastasenaufarbeitung abgeschlossen ist und der Patient für die Reoperation geeignet ist, die je nach Überweisungszeitpunkt und Krankheitsstadium 2-4 Wochen nach der Cholezystektomie erfolgen kann. Eine radikale Reoperation wird für Patienten mit der Krankheit ≥ pT1b empfohlen [573].

Eine radikale Cholezystektomie mit Lymphadenektomie sollte bei Patienten mit T1b-GBCA empfohlen werden, bei denen kein erhöhtes Risiko für postoperative Komplikationen besteht [575], [577].

Die Resektion der extrahepatischen Gallenwege ist die Standardoperation bei Gallenblasenkarzinomen, die (makroskopisch oder mikroskopisch) den Hals der Gallenblase und/oder den D. Cysticus betreffen [573].

4.24 Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Bei einem isolierten intrahepatischen Rezidiv eines CCA kann eine erneute Resektion durchgeführt werden, wenn eine komplette Resektion (R0-Resektion) möglich erscheint.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>

Nach Resektion eines iCCA kann bei einem auf die Leber beschränkten Tumorrezidiv ein erneuter Resektionsversuch unternommen werden. Die Überlebensraten sind denen nach Primäroperation vergleichbar [579], [580]. Isolierte Rezidive eines perihilären Cholangiokarzinoms sind nur selten einer chirurgischen Therapie zugänglich.

4.25 Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Wenn Rezidive nach einer vorangegangenen Operation nicht erneut operativ versorgt werden können, können diese mit thermischer Ablation behandelt werden, wenn hierdurch eine komplette Ablation möglich erscheint.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Für die thermische Ablation bei iCCA Rezidiven nach Resektion konnten in mehreren Studien gute Ergebnisse gezeigt werden [581], [582], [583], [584], [585], [586], [587], [588], [589]. Hier konnte in 2 kontrollierten Studien bei insgesamt 230 Patienten [582], [583] bei vergleichbaren Patientencharakteristiken ein vergleichbares progressionsfreies Gesamtüberleben von 31,3 Monaten für die Resektion versus 29,4 Monaten für
4.4 Operative und interventionelle Therapieverfahren

4.4.2 Lebertransplantation

<table>
<thead>
<tr>
<th>4.26</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Lebertransplantation für das iCCA soll außerhalb von Studien nicht erfolgen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Derzeitig stellt das iCCA eine Kontraindikation für eine Lebertransplantation in den meisten Ländern weltweit aufgrund früher Tumorrezidive und schlechten Überlebensraten (5-Jahres-Gesamtüberleben zwischen 35 % und 47 %) dar [479], [523], [591].

Zu beachten ist, dass dies nicht immer Intention-to-Treat Analysen sind, sondern die Diagnose eines iCCA vielfach erst nach der Lebertransplantation im finalen histologischen Befund der Explantatleber gestellt wird, die Lebertransplantation jedoch ursprünglich mit der Indikation eines HCCs durchgeführt wurde [592], [593].

Im Fall eines iCCA < 2 cm (d.h. „sehr frühes“ iCCA) scheint die Lebertransplantation jedoch mit ähnlichen Ergebnissen wie bei einem HCC innerhalb der Mailand-Kriterien einherzugehen [594]. Dieses Konzept wurde durch eine weitere Studie validiert [595].

Lunsford et al. haben vor kurzem ein Protokoll für die Lebertransplantation bei Patienten mit lokal fortgeschrittenem, inoperablem iCCA nach neoadjuvanter Chemotherapie erstellt. Voraussetzung war eine dauerhafte Regression oder zumindest kein Tumorprogress unter Chemotherapie. 6 von 21 rekrutierten Patienten wurden transplantiert und hatten eine Gesamtüberlebensrate nach 5 Jahren von 83 % (5 der 6 Patienten), 3 davon ohne Rezidiv. [596]
4.27 Evidenzbasierte Empfehlung geprüft 2022

Empfehlungsgrad 0
Bei irresektablen, nichtmetastasierten pCCA, welches die Mayo-Kriterien erfüllt, kann eine Lebertransplantation unter Studienbedingungen erwogen werden.

Level of Evidence 3 [597]; [598]
Starker Konsens

Tabelle 12: Mayo-Kriterien

<table>
<thead>
<tr>
<th>Mayo-Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irresektables pCCA oder pCCA in PSC-Zirrhose</td>
</tr>
<tr>
<td>Tumor-Durchmesser < 3 cm</td>
</tr>
<tr>
<td>keine LK-Metastasen (obligate chirurgische Exploration)</td>
</tr>
<tr>
<td>keine extrahepatische Tumormanifestation</td>
</tr>
<tr>
<td>histologisch/zytologisch bestätigtes pCCA oder CA19-9 > 1000 kU/L mit Vorliegen radiologischer Zeichen einer malignen Stenose</td>
</tr>
</tbody>
</table>

Die Lebertransplantation scheint bei irresektablen, nichtmetastasierten pCCA eine valide Option mit vielversprechenden Ergebnissen (Gesamtüberlebensrate > 50 % nach 5 Jahren). Die Rolle der neoadjuvanten Therapie ist bislang nicht geklärt.

Die meisten Daten zur Lebertransplantation stammen aus den USA, u.a. aus dem Zentrum mit der größten Erfahrung, der Mayo Klinik in Rochester [599]. In diesem Zentrum wurde ein neoadjuvantes Protokoll etabliert, das auf einer Kombination aus Strahlentherapie (45 Gy external beam radiation mit ggf. intraluminaler Brachytherapie) und Chemotherapie (5-FU über 3 Wochen gefolgt von Capecitabin) basiert. Lymphknotenmetastasen stellen eine absolute Kontraindikation dar. Sie sollen im Rahmen einer explorativen Laparotomie vor Lebertransplantation ausgeschlossen werden. Bis dato wurden mehr als 160 Patienten gemäß diesem Protokoll transplantiert mit einem 5-Jahres-Gesamtüberleben zwischen 50 % bis 80 %, abhängig von verschiedenen Unter- und Risikogruppen [597], [598], [600], [601]. Eine prospektiv-randomisierte Studie zum Vergleich Lebertransplantation versus palliative Therapie existiert bislang nicht.

4.4.3 Interventionelle Therapieverfahren

4.4.3.1 Perkutane Ablation

Grundsätzlich ist die thermische Ablation beim iCCA bis 3 cm Durchmesser möglich und klinisch effektiv [603], [604], [605], [606], [607], [608], [609], [610], [611], [612]. Mit modernen, effektiven Ablationstechniken und in Kombination mit selektiver Embolisation ist eine Ablation beim iCCA auch bis 5 cm Durchmesser in Analogie zum Vorgehen beim HCC möglich [613]. Die thermische Ablation wird in den EASL guidelines mit einer Empfehlung C2 als „kann Option“ für „kleine Läsionen, die nicht chirurgisch zugänglich sind“ aufgeführt [614]. Es wird empfohlen, weitere klinische Studien durchzuführen. Auch in den National Comprehensive Cancer Network (NCCN) guidelines V3-2019 ist die thermische Ablation als Therapie des irresektablen iCCA explizit genannt [615].

Mehrere retrospektive Studien liegen vor, die den Wert der thermischen Ablation im historischen Vergleich mit akzeptablen Überlebensraten zeigen. In der bisher größten single center Studie mit 107 Patienten und 171 Tumoren [612] zeigte die Ablation bei primärem iCCA ein PFS nach 6, 12, 18 und 24 Monaten von 67,4 %; 41,5 %; 18,2 % und 8,7 % und ein OS nach 1, 3 und 5 Jahren von 93,5 %, 39,6 % und 7,9 %. In einer Metaanalyse [505] betrugen die gepoolten 1-Jahres-, 3-Jahres- und 5-Jahres-Überlebensraten 82 % (95% CI: 72 %; 90 %), 47 % (95% CI: 28 %; 65 %) und 24 % (95% CI: 11 %; 40 %).

4.4.3.2 Intraarterielle Therapieverfahren

Befall vorliegt, der jedoch nicht Prognose bestimmend ist. Im Tumorboard kann daher in Einzelfällen beim inoperablem iCCA auch bei extrahepatischem Befall, der nicht Prognose bestimmend ist, eine intraarterielle Therapie in Erwägung gezogen werden.

Sowohl mit TARE als auch mit HAI wurde in Studien [613], [620], [621] über Downstaging berichtet, das bei einigen Patienten eine R0-Resektion ermöglichte. [622] Dies bestätigt die Notwendigkeit der erneuten Beurteilung der Patienten nach intraarteriellen Therapien in einem multidisziplinären Team bei gutem Ansprechen.
4.4.4 Endoskopische Therapieverfahren

4.4.4.1 Präoperative biliäre Drainagen

<table>
<thead>
<tr>
<th>4.30</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Indikation für eine präoperative biliäre Drainage sollte interdisziplinär getroffen werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.31</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei Vorliegen einer Cholangitis sollte eine präoperative biliäre Drainage umgehend erfolgen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

widersprüchliche Ergebnisse vor. Dies betrifft sowohl das Auftreten von Komplikationen durch die jeweilige Prozedur als auch die Erfolgsraten, wobei diese bei der PTCD etwas höher zu sein scheint.

Es liegen zwei Metaanalysen mit bis zu vier retrospektiven nicht-randomisierten Studien vor [624], [625]. In diesen wird eine vergleichbare bzw. etwas höhere Morbidität nach ERCP im Vergleich zur PTCD gefunden. Eine randomisierte Studie (Einschlusskriterien: Bilirubin >2,9 mg/dl, geplante erweiterte Leberresektion) wurde vorzeitig beendet, da in der PTCD-Gruppe eine signifikant höhere (Gesamt)-Mortalität (41 % von 27 Patienten) als in der endoskopisch gelegten Drainage-Gruppe (11 % von 27 Patienten) (p = 0,03) vorlag. Allerdings war bei 56 % der Patienten zusätzlich zur endoskopisch gelegten Drainage eine perkutan gelegte Drainage erforderlich. Zudem entwickelten 16 (59 %) Patienten nach PTCD eine Cholangitis vs. 10 (37 %) nach ERCP [626].

Wahrscheinlich hat auch die jeweilige Expertise im Zentrum einen Einfluss auf das Outcome bei PBD. In einer multizentrischen, retrospektiven Analyse aus China zeigte sich im Vergleich einer ERCP vs. PTCD eine höhere periinterventionelle Morbidität in der ERCP Gruppe [627]: Nach ERCP hatten 37 % der Patienten eine Cholangitis und 17 % eine Pankreatitis gegenüber von 22 % mit Cholangitis und 2 % mit Pankreatitis nach PTCD-Anlage.

Die in Japan bevorzugt gelegte nasobiliäre Drainage erscheint in westlichen Ländern wenig praktikabel [628], zudem scheint sie keinen Vorteil gegenüber einer Plastikstenanlage zu bieten [629].

Das Risiko einer Tumorzellverschleppung durch den Zugangsweg der Drainage ist zwar selten, wird nach PTCD aber beobachtet – nicht aber nach endoskopischer Therapie [630], [631].

Vor Augmentationsverfahren der Leber (z.B. Pfortaderembolisation) sollte zumindest eine biliäre Drainage des zukünftigen Restlebergewebes (Future Liver Remnant) erfolgen [632]. Die Drainage des zu entfernenden Lebergewebes hat nur einen geringen Einfluss auf die Hypertrophieinduktion [633].

Zusammenfassend sollte die Indikation zu einer PBD in einem hepatobiliären Zentrum erfolgen; hier ist eine interdisziplinäre Planung der Behandlung unter Einschluss des chirurgischen, des interventionellen/endoskopischen und radiologischen Behandlers möglich. Die interventionelle Therapie muss hierbei auch durch alternative Drainagewege möglich sein, da eine primär insuffiziente Drainage nicht selten ist und dann eine alternative Therapiestrategie ergriffen werden muss.

Ergänzende Literaturübersicht s. Anhang (Tabelle 27: Übersicht über Literatur zur präoperativen biliären Drainage (PBD)).
4.4 Operative und interventionelle Therapieverfahren

4.4.4.2 Palliative biliäre Drainage

<table>
<thead>
<tr>
<th>4.32</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine palliative biliäre Drainage soll Patienten mit symptomatischem Gallenwegsverschluss angeboten werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.33</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine palliative Drainage sollte in einem erfahrenen Zentrum durchgeführt werden, da hier auch alternative Drainageverfahren zur Verfügung stehen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Grundsätzlich kann die Lebensqualität bei Hyperbilirubinämie durch eine erfolgreiche Drainage verbessert werden [635]. Für ein verlängertes Überleben durch eine erfolgreiche Drainage in der Palliation gibt es zahlreiche Hinweise [636]. Es wird eine 30-Tages-Mortalität bei der distalen biliären Stenose von 2 bis 20 % und von 9 bis 20 % in der perihilären Stenose berichtet [637], [638], [640].

Randomisierte Studien berichten von höherem Erfolg und niedrigeren Komplikationen der PTCD vs. ERCP beim perihilären Gallenwegsverschluss [636], [637], [649], [650], aber die Lebensqualität könnte bei dem inneren Drainageverfahren höher sein [651].

Die Drainage eines Gangabschnitts, bei dem bereits eine Atrophie der abhängigen Lebersegmente eingetreten ist, sollte nicht erfolgen, da erhöhte Komplikationsraten und keine wesentliche Verbesserung des Patienten-Outcomes zu erwarten sind [656].

Literaturübersicht s. Anhang (Tabelle: Übersicht über Literatur zur bilären Drainage (BD) bei Cholangiokarzinom)

4.4.4.3 Intraduktale lokoregionäre Therapieverfahren

<table>
<thead>
<tr>
<th>4.34</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Intraduktale, lokalablative Verfahren (Photodynamische Therapie und intraduktale RFA) können nach Beschluss des Tumorboards durchgeführt werden, um eine effektive Palliation zu ermöglichen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Intraduktale, lokalablative Verfahren können bei einem lokal begrenzten Tumor in Betracht gezogen werden. Es handelt sich hierbei um eine palliative Behandlungsform. Für

Literaturübersicht s. Anhang (Tabelle: Übersicht über Literatur zu intraduktalen, lokalablative Verfahren (PBD))

4.4.5 Stereotaxie

<table>
<thead>
<tr>
<th>4.35</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Hochpräzisionsradiotherapie (Stereotactic Body Radiotherapy; SBRT) kann nach Beschluss in einer Tumorkonferenz bei fehlenden alternativen Therapieoptionen angeboten werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Eine Reihe von Autoren hat in den vergangenen Jahren berichtet, dass nach einer definitiven Radiotherapie die Höhe der Dosis mit einer hohen Lokalkontrollrate und auch
mit dem Überleben der Patienten korreliert [669], [670], [671]. Obwohl das zunächst mit einer konventionell fraktionierten Radio(chemo)therapie beobachtet wurde [669], [671], hat die Mehrzahl der Studien der letzten Jahre eine SBRT dafür eingesetzt, welche typischerweise eine Dosiseskalation im Zentrum der Bestrahlungsvolumina verwendet [670], [672], [673]. Die Dosisabhängigkeit gilt sowohl für intrahepatische wie auch für perihiläre CCA. Darüber hinaus ist eine sequentielle Chemotherapie vor und/oder nach der Radiotherapie ein weiterer Faktor für die Verlängerung des Überlebens, und einige Studien haben eine Kombination der Radiotherapie mit einer sequentiellen Chemotherapie durchgeführt [671], [672].

Die Erfahrungen mit SBRT zur Behandlung von Cholangiokarzinomen sind begrenzt. Eine Metaanalyse fasst 226 Patienten in 4 prospektiven [674], [675], [676], [677] und 7 retrospektiven Studien zusammen [672]. Die gepoolte 1-Jahres-Lokalkontrollrate war 81,8% (95% CI: 69,4; 89,9%) wenn die 2 Gy-Äquivalenzdosis (EQD2) ≥ 71.3 Gy war und darunter bei 74,7 % (95% CI: 57,1 %; 86,7 %). Das mediane Überleben lag bei 13,6 Monaten (10 – 35,5 Monate). Die berichteten Toxizitäten waren moderat mit < 10 % Akuttoxizität ≥ 3 und 10–20 % Spättoxizität, v.a. als duodenale und gastrale Ulzera.

4.4.6 Nachsorge

Konsensbasierte Empfehlung

| EK | Nach Resektion/Ablation eines CCA sollte nach 4-12 Wochen erstmals, im ersten Jahr alle 3 Monate und im zweiten Jahr alle 3-6 Monate ein biphasisches CT oder ein dynamisches MRT durchgeführt werden. |

Starker Konsens

4.5 Systemtherapie

4.5.1 Adjuvante Therapie

<table>
<thead>
<tr>
<th>4.37</th>
<th>Konsensbasiertes Statement</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Nach chirurgischer Tumorentfernung besteht ein Rezidivrisiko von 40-80 %. Insbesondere Patienten mit Lymphknotenmetastasen (N1), positiven Resektionsrändern (R1) oder niedrigem Differenzierungsgrad (G3) haben ein hohes Rezidivrisiko.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.38</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>Aufgrund des hohen Rezidivrisikos sollten Patienten nach chirurgischer Tumorentfernung (R0, R1) eine adjuvante Systemtherapie mit Capecitabin angeboten werden.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Aufgrund des subendothelialen Wachstums entlang der Perineuralscheiden beträgt das Rezidivrisiko nach radikaler chirurgischer Tumorentfernung für ein perihiläres Cholangiokarzinom (CCA) 40-80 % (Auflistung der Studienergebnisse siehe [679]). Auch für andere Lokalisationen des CCA und für Gallenblasenkarzinome (G8-CA) ist das Rezidivrisiko ähnlich hoch. Risikofaktoren für ein frühes Rezidiv sind vor allem Lymphknotenmetastasen (N1), R1-Status und ein niedriger Differenzierungsgrad (G3). Eine Metaanalyse retrospektiver und einarmiger Studien mit mehr als 6000 Patienten mit CCA oder G8-CA ergab für Patienten mit einem dieser Risikofaktoren einen Vorteil für eine adjuvante Therapie [680]. Zusätzlich liegen mit den Ergebnissen der BILCAP-Studie jetzt auch erstmals Daten einer randomisierten Phase-III-Studie vor, die den Nutzen einer adjuvanten Chemotherapie zeigen [570]. In dieser Studie wurde bei 447 Patienten mit CCA oder muskelinvasivem G8-CA sowie vollständiger makroskopischer Tumorentfernung (R0 oder R1) die Gabe von Capecitabin (1250 mg/m² zweimal täglich an Tag 1 bis 14 bei einer Zyklusdauer von 21 Tagen, insgesamt 8 Zyklen) mit der alleinigen Nachsorge verglichen. Der Therapiebeginn sollte innerhalb von 12 Wochen postoperativ bei Patienten mit ECOG 0 – 1 erfolgen, erlaubt war eine Ausdehnung des Zeitraumes bis auf 16 Wochen.

In der Per-Protokoll-Analyse ergab sich ein signifikanter Unterschied im medianen Gesamtüberleben von 53 versus 36 Monate (HR: 0,75; 95% CI: 0,58; 0,97, p = 0,028). In der Intention-to-Treat-Analyse war der Unterschied zwischen beiden Gruppen vergleichbar mit 51 versus 36 Monate (HR: 0,81; 95% CI: 0,63; 1,04, p = 0,097), allerdings nicht signifikant. Die mediane Zeit von der OP bis zum Therapiebeginn lag bei 10,3 Wochen. Die französische PRODIGE 12-Studie konnte ebenfalls durch Gemcitabin und Oxaliplatin im Vergleich zur alleinigen Nachsorge keine signifikante Verbesserung des Gesamtüberlebens erzielen [581]. Zurzeit wird in der internationalen ACTICCA-1-Studie unter
Beteiligung fast aller universitären Zentren in Deutschland die Wirksamkeit einer adjuvanten Chemotherapie mit Gemcitabin und Cisplatin gegen Capecitabin getestet [682].

Auf Basis der zitierten Metaanalyse und der BILCAP-Daten sollte allen Patienten und insbesondere denjenigen mit einem der genannten Risikofaktoren (N1, R1 oder G3) eine adjuvante Therapie mit Capecitabin oder ein Einschluss in die ACTICCA 1-Studie angeboten werden. Aufgrund fehlender Evidenz besteht außerhalb von klinischen Studien zurzeit keine Indikation für eine adjuvante Strahlentherapie.

4.5.2 Neoadjuvante Therapie primär resektabler Tumoren

<table>
<thead>
<tr>
<th>4.39</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine neoadjuvante Chemotherapie soll bei primär resektablen Tumoren nicht außerhalb von klinischen Studien erfolgen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

4.5.3 Systemtherapie lokal fortgeschrittener Tumoren

<table>
<thead>
<tr>
<th>4.40</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei primär irresektablen Tumoren sollte unter einer Tumortherapie eine erneute Vorstellung im Tumorboard mit der Frage einer sekundären Resektabilität erfolgen.</td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Prinzipiell gilt jedoch auch für alle anderen eingesetzten Systemtherapien, z.B. in klinischen Studien, dass bei gutem Ansprechen die Resektabilität nach 2-3 Monaten erneut evaluiert werden sollte.
4.5.4 Palliative Systemtherapie

4.41 Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Allen Patienten mit Cholangio- oder Gallenblasenkarzinom soll bei adäquatem Allgemeinzustand in der inoperablen lokal fortgeschrittenen oder metastasierten Situation eine palliative Systemtherapie angeboten werden.</td>
<td></td>
</tr>
</tbody>
</table>

Level of Evidence 2

Konsens

Bei der Indikationsstellung zur Chemotherapie sind der Allgemeinzustand des Patienten, die Komorbiditäten, die Patientenpräferenzen sowie die Toxizität der geplanten Schemata zu berücksichtigen [523], [689]. In der ABC-02-Studie (s.u.) zeigte sich ein Überlebensvorteil für alle Tumorlokalisationen. Der Vorteil war am deutlichsten für Patienten mit einem ECOG Performance Status (PS) 0 oder 1.

4.5.4.1 Erstlinientherapie

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Als Systemtherapie soll in der Erstlinie die Kombination Gemcitabin und Cisplatin angeboten werden.</td>
<td></td>
</tr>
</tbody>
</table>

Level of Evidence 2

Konsens

Zwei Studien, die britische ABC-02-Studie [683] und die japanische BT22-Studie [686], haben in einer gemeinsamen Auswertung bei insgesamt fast 500 Patienten die Überlegenheit einer Kombinationstherapie bestehend aus Gemcitabin und Cisplatin gegenüber einer Monotherapie mit Gemcitabin gezeigt. In der im Vorfeld geplanten gemeinsamen Auswertung beider Studien [687] konnte das mediane Gesamtüberleben von 8,0 auf 11,6 Monate (HR=0,65, 95% CI: 0,54; 0,78, p < 0,001) gesteigert werden. Die beiden Studien führten auch separat zu einer signifikanten Verlängerung des medianen Gesamtüberlebens im Therapiearm mit Gemcitabin und Cisplatin. Hierbei ist besonders zu berücksichtigen, dass mit der Applikation von Gemcitabin 1000 mg/m² und Cisplatin 25 mg/m² an den Tagen 1 und 8 bei einer Zyklusdauer von 21 Tagen ein gut verträgliches Therapieschema implementiert wurde. So zeigten sich keine Unterschiede in beiden Therapiegruppen in Bezug auf das Auftreten von schwergradigen (CTCAE Grad 3 und 4) Nierenfunktionsstörungen (Gemcitabin und Cisplatin versus Gemcitabin: 1,5 % vs. 1 %, p = 0,83) sowie von Übelkeit (4,0 % versus 3,5 %, p = 0,78) und Erbrechen (5,1 vs. 5,5 %, p = 0,65). Eine Metaanalyse aus 2015 bestätigte Gemcitabin und Cisplatin als wirksame Therapie bei diesen Tumoren [688].
Bei Patienten mit ECOG 2 kann alternativ eine Monotherapie mit Gemcitabin erfolgen und bei eingeschränkter Nierenfunktion kann Oxaliplatin statt Cisplatin eingesetzt werden [689]. Die Lebenserwartung bei symptomorientierter Therapie beträgt nach historischen Daten dagegen nur ca. 2,5 bis 4,5 Monate [687]. Alternativ zu dieser Erstlinientherapie wird die Teilnahme an klinischen Studien empfohlen.

4.5.4.2 Therapie nach Versagen der Erstlinientherapie

<table>
<thead>
<tr>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK Nach Versagen oder Unverträglichkeit der Erstlinientherapie soll Patienten mit adäquatem Allgemeinzustand eine weitere Therapie angeboten werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konsens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konsensbasierte Empfehlung</th>
<th>neu 2022</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Starker Konsens (100%, mit Enthaltungen aufgrund von Interessenkonflikten 100%)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Evidenzbasierte Empfehlung</th>
<th>neu 2022</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Starker Konsens (97%, mit Enthaltungen aufgrund von Interessenkonflikten 97)</th>
</tr>
</thead>
</table>

Die Zulassung von Pemigatinib beruht auf der einarmigen Phase II Studie FIGHT-202 [692]. Als primärer Endpunkt zeigten 38 von 107 Patienten (36 %) ein Ansprechen auf die Tumortherapie, davon 35 Patienten mit einer partiellen und 3 Patienten mit einer kompletten Remission. Die mediane Dauer des Therapieansprechens war 7,5 Monate (95% CI: 5,7; 14,5) [592]. In den USA wurde in der Zwischenzeit für einen weiteren FGFR-Inhibitor, Infgratinib, eine Zulassung in dieser Indikation, ebenfalls basierend auf einer einarmigen Phase II Studie [691], erteilt. Diese weitere Studie unterstreicht die Bedeutung des FGFR2-Signalweges für eine Supgruppe von Cholangioskarkinomen mit FGFR2-Fusion oder -Rearrangement (s. auch Hintergrundtext zu Empfehlung 4.46). Aufgrund der guten Ansprechraten wurde hier bei einem Level of Evidence 3 eine starke Empfehlung ausgesprochen.
In einer palliativen Situation bei Patienten mit ECOG 0 – 1 sollte eine molekulare Charakterisierung des Tumors und Vorstellung in einem Interdisziplinären/Molekularen Tumorboard erfolgen.

Konsens

Die Daten zu Tumoren mit FGFR2-Fusionsgenen zeigen, dass molekulargenetische Marker eine zunehmend größere Rolle für die Therapieauswahl spielen. Die molekulare Charakterisierung von Cholangiokarzinomen deutet darauf hin, dass diese Tumorentität sich in besonderem Maße für eine molekulargerichtete Therapie eignet [698] und dass diese Patienten bei gutem Allgemeinzustand (ECOG 0 – 1) nach einem Versagen von verfügbaren Therapien in einem molekularen Tumorboard vorgestellt werden sollten. Beispiele für molekulare Veränderungen, die therapeutisch genutzt werden können, sind neben FGFR2 insbesondere die Untersuchung auf Mikrosatelliteninstabilität, NTRK-Fusionsgene, Amplifikationen von HER2, die BRAF V600E Mutation oder Mutationen im IDH1-Gen.

- Die Bestimmung auf Mikrosatelliteninstabilität soll Tumoren mit funktionsgestörten DNA-Reparatursystemen (sog. MSI high Tumoren) identifizieren, die von einer Immuntherapie mit PD-1 Checkpoint-Inhibitoren profitieren [699][700][701]. Diese machen in frühen Krankheitsstadien bis zu 1 % und bei fortgeschrittenen Tumoren bis zu 2 % aller biliarer Karzinome aus [700][702]. Zum Einsatz immunonkologischer Substanzen auch bei Patienten ohne MSI high-Status laufen derzeit Studien.

- Amplifikationen von HER2 (ERBB2) finden sich bei 5 – 15 % aller Gallenwegstumoren, am häufigsten bei Karzinomen der Gallenblase [712]. Erste vielversprechende Fallberichte zur Therapieerfolg dieser Veränderungen liegen vor [713][714][715]. In der Phase 2-Studie "MyPathway" wurden Patienten mit einem metastasierten biliären Karzinom und einer Her2-Amplifikation und/oder Her2-Überexpression im ECOG Performance Status 0-2 mit Pertuzumab in Kombination mit Trastuzumab behandelt. Es konnte bei 9 von 39 Patienten ein partial response (23 % [95% CI: 11-39 %] festgestellt werden [694].

- Für Patienten mit der BRAF-Mutation V600E wurde ein Ansprechen auf den BRAF-Inhibitor Vemurafenib zunächst in Einzelfällen beschrieben [716]. Inzwischen
gibt es weitere Daten für ein gutes Ansprechen mit einer Kombination aus dem BRAF-Inhibitor Dabrafenib und dem MEK-Inhibitor Trametinib in einem frühen Bericht aus der „NCI-MATCH“ Studie [717], weiteren Fallberichten [718][719][720] und der Phase II Studie ROAR. In dieser Studie wurden 43 Patienten mit einer BRAF-V600E Mutation behandelt. Insgesamt wurde bei 20 Patienten (47 %) ein Therapieansprechen beobachtet, 15 Patienten zeigten einen stabilen Krankheitsverlauf (35 %) und bei 6 Patienten wurde ein Progress (14 %) als “best response” dokumentiert. Das Gesamtüberleben nach 12 Monaten betrug 56 %, nach 24 Monaten 36 % und das mediane Gesamtüberleben in dieser Kohorte war 14 Monate [693].

- Für Patienten mit einer Mutation im Isocitrat Dehydrogenase 1 (IDH1) Gen zeigen Ergebnisse der Phase-III-ClarIDHy-Studie ein signifikant längeres medianes PFS mit 2,7 unter Ivosidenib vs. 1,4 Monaten mit Placebo, allerdings separieren sich die Kurven deutlich im längerfristigen Verlauf [721]. Das mediane Gesamtüberleben in der Studie war nicht signifikant unterschiedlich mit 10,8 Monaten mit Ivosidenib vs. 9,7 Monaten mit Placebo, allerdings wurden aus dem Placeboarm mehr als die Hälfte der Patienten nach Progress mit Ivosidenib behandelt (cross-over Studiendesign). Somit scheint eine Subgruppe der Patienten deutlich von der Therapie zu profitieren. Die „Disease Control Rate“, d.h. der Anteil an Patienten mit mindestens stabiler Erkrankung oder partieller Remission lag für Ivosidenib bei 53 % und für Placebo bei 28 %. In den USA hat die FDA eine Zulassung für eine Therapie von metastasiertem und vorbehandeltem CCA im August 2021 erteilt.

Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
<th>modifiziert 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Als medikamentöse Zweitlinientherapie kann bei Patienten mit ECOG 0-1 eine Therapie mit FOLFOX angeboten werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>[722]</td>
</tr>
<tr>
<td></td>
<td>Starker Konsens (96%, mit Enthaltungen aufgrund von Interessenkonflikten 97%)</td>
</tr>
</tbody>
</table>

Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Konsensbasierte Empfehlung</th>
<th>neu 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nach Versagen mindestens einer vorherigen Therapielinie kann eine Irinotecan-haltige Therapie angeboten werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starker Konsens (96%, mit Enthaltungen aufgrund von Interessenkonflikten 97%)</td>
<td></td>
</tr>
</tbody>
</table>

Für den Nutzen einer Zweitlinientherapie bei radiologisch progredienter Tumorerkrankung unter der Erstlinientherapie liegen Daten aus der ABC-06-Studie vor [722].

In der randomisierten Phase-III-Studie ABC-06 wurde ein modifiziertes FOLFOX-Regime gegen eine alleinige symptomoriintierte Therapie verglichen und eine moderate Verbesserung des medianen Gesamtüberlebens von 5,3 Monate auf 6,2 Monate mit Chemotherapie erreicht (HR: 0,69 (95% CI: 0,50; 0,97; p = 0,032) [722]. Die 1-Jahres-
Überlebensrate für FOLFOX war mit 25,9 % etwas mehr als doppelt so hoch wie in der Kontrollgruppe mit 11,4 %.

Die Kombination von Irinotecan und Capecitabin führte im Vergleich zu einer Irinotecan Monotherapie in einer randomisierten Phase II Studie aus China mit 60 Patienten nach Progress unter Gemcitabin und Cisplatin zu einer Verlängerung des mOS (10,1 vs 7,3 Monate) bei einer 9-Monate Überlebensrate von 60,9 % vs. 32 % [723]. Diese Ergebnisse wurden durch die NIFTY Studie aus Süd-Korea bei 178 Patienten bestätigt. In dieser Phase-IIb Studie wurde die Kombination von 5-FU/Leukovorin und liposomalem Irinotecan gegenüber 5-FU/Leukovorin alleine untersucht. Das mPFS bei Patienten, die mit der Kombination behandelt wurden, betrug 7,1 Monate im Vergleich zu 1,4 Monaten für Patienten, die nur mit 5-FU/Leukovorin behandelt wurden. Das mediane OS lag bei 8,6 Monate im experimentellen Arm und 5,5 Monate im Kontrollarm [724]. In einer weiteren Phase II Studie mit 98 Patienten aus Indien wurde der Überlebensvorteil durch die Hinzunahme von Capecitabin zu Irinotecan gegenüber einer Irinotecan-Monotherapie bei Patienten mit einem Gallenblasenkarzinom nicht bestätigt (5,2 vs 6,3 Monate) [725], sodass auch die Monotherapie eine valide Option sein kann.

Angesichts der überwiegend moderaten Vorteile von "klassischen" Chemotherapieregimen ab der Zweitlinie ist für Patienten mit gutem Allgemeinzustand daher die oben empfohlene molekulare Charakterisierung des Tumors und Vorstellung in einem Molekularen Tumorboard ein wichtiger zusätzlicher diagnostischer Schritt.

4.5.5 Verlaufskontrollen unter Systemtherapie

<table>
<thead>
<tr>
<th>4.49</th>
<th>Konsensbasierte Empfehlung</th>
<th>geprüft 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei bilären Karzinomen unter Systemtherapie sollte alle 6–12 Wochen die diagnostisch am besten geeignete Schnittbildgebung durchgeführt werden. Die Interpretation im klinischen Alltag sollte sich an den Auswerteprinzipien von RECIST 1.1 orientieren.</td>
<td></td>
</tr>
</tbody>
</table>

Konsens
5 Qualitätsindikatoren

Die Qualitätsindikatoren wurden auf der Grundlage der Langversion 2.01 Juni 2021 erstellt und bei dieser Version nicht verändert.

Nach zwei Online-Sitzungen dieser AG wurden drei neue Qualitätsindikatoren (QI) angenommen, wobei zwei (QI 8 und 9) das bestehende Set ergänzen und ein QI (Typisierung CCA nach WHO-Klassifikation) den bestehenden QI 1 ergänzt. Zwei QI aus dem vorbestehenden Set (QI 3 Ausbreitungsdiagnostik, QI 5 Nachsorge nach kurativen Verfahren) wurden gestrichen.

Tabelle 13: Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Qualitätsindikator</th>
<th>Referenz-Empfehlung</th>
<th>Evidenzgrundlage / weitere Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI 1: Typisierung nach WHO-Klassifikation (seit 2013; in 2020 ergänzt)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zähler
Patienten des Nenners mit Typisierung nach aktueller WHO-Klassifikation

Nenner
N1: Alle Patienten mit histologisch gesichertem HCC
N2: Alle Patienten mit histologisch gesichertem CCA

3.20 Die Typisierung des HCCs soll nach der aktuellen WHO-Klassifikation richten. Hierbei sollten zum einen Sonderformen (z.B. fibrolamelläres HCC und mischdifferenzierte Tumoren (kombiniertes HCC/iCCA)) und wenn möglich auch das frühe HCC vom progredienten HCC und prämalignen Läsionen unterschieden werden. Es sollte eine sichere Unterscheidung von Sonderformen des intrahepatischen Cholangiokarzinoms, Lebermetastasen und auch benignen Lebertumoren erfolgen. 4.8

EK Qualitätsziel: Möglichst häufig Typisierung nach WHO
<table>
<thead>
<tr>
<th>Qualitätsindikator</th>
<th>Referenz-Empfehlung</th>
<th>Evidenzgrundlage / weitere Informationen</th>
</tr>
</thead>
</table>

QI 2: Inhalt Befundberichte HCC (seit 2013)

Zähler
Patienten des Nenners mit Befundberichten mit Angabe zu:· Staging (nach TNM-Klassifikation)· Typing (nach WHO-Klassifikation)· Grading· Resektionsrand· Status der Umgebungslieber

Nenner
Alle Patienten mit HCC und Leberresektion oder Leberexplantation

3.21
Die Bearbeitung und Befundung eines Resektats oder Explantats soll die Ausdehnung des Tumors (Staging) gemäß der aktuellen TNM-Klassifikation, seinen Typ (Typing) und Differenzierungsgrad (Grading) und den Status des Resektrandes (R-Klassifikation) sowie den Status der nicht-tumorösen Leber ermitteln.

EK
Qualitätsziel: Möglichst häufig vollständige Befundberichte

QI 4 - Vorstellung Tumorkonferenz (seit 2013)

Zähler
Patienten des Nenners mit prätherapeutischer Vorstellung in der Tumorkonferenz

Nenner
Alle Patienten mit HCC

TEILNEHMER TK: Gastroenterologe, Pathologe, interventioneller Radiologe, Viszeralchirurg

Videokonferenzen sind möglich

EK
Qualitätsziel: Möglichst häufig prätherapeutische Vorstellung in der Tumorkonferenz

QI 6 - Vorstellung Tumorkonferenz nach TACE (modifiziert 2020)

Zähler
Patienten des Nenners mit Vorstellung in der Tumorkonferenz nach zwei Behandlungszyklen

Nenner
Alle Patienten mit HCC und TACE

3.67
Die Indikation zur Fortführung der TACE soll nach zwei Behandlungszyklen im Tumorboard überprüft werden.

EK
Qualitätsziel: Möglichst häufig Vorstellung in der Tumorkonferenz nach TACE
<table>
<thead>
<tr>
<th>Qualitätsindikator</th>
<th>Referenz-Empfehlung</th>
<th>Evidenzgrundlage / weitere Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI 7 - mRECIST-/EASL-Klassifikation nach TACE (modifiziert 2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td>Patienten des Nenners mit Beurteilung der Remission mittels mRECIST- oder EASL-Klassifikation</td>
<td>3.73 Die Remissionsbeurteilung nach Ablation/TACE/TARE soll nach mRECIST/EASL erfolgen.</td>
</tr>
<tr>
<td>Nenner</td>
<td>Alle Patienten mit HCC und TACE</td>
<td>Qualitätsziel: Möglichst häufig Verwendung der mRECIST- oder EASL-Klassifikation nach TACE</td>
</tr>
<tr>
<td>QI 8 - Bridging-Therapie (neu 2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td>Patienten des Nenners, die eine Bridging-Therapie erhalten haben</td>
<td>A, LoE 1 Qualitätsziel: Möglichst häufig Bridging-Therapie bei Patienten mit HCC (BCLC A) innerhalb der Mailand-Kriterien</td>
</tr>
<tr>
<td>Nenner</td>
<td>Alle Patienten mit HCC (BCLC A), Child A auf der Transplantationswarteliste</td>
<td>Bridging: Lokalablation, Resektion, oder transarterielle Verfahren (TACE, TARE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCLC A:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECOG (PS): 0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Child-Pugh A bis C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Singulärer Tumor > 2cm oder frühe multifokale Erkrankung mit bis zu 3 Tumoren < 3cm</td>
</tr>
<tr>
<td>QI 9 - Inhalt Befundberichte CCA (neu 2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td>Alle Patienten mit CCA und Resektion oder Explantation</td>
<td></td>
</tr>
</tbody>
</table>
Anhang

6.1 Literaturübersichten

6.1.1 Kapitel 3.4 Operative und interventionelle Therapieverfahren

Tabelle 14: Literaturübersicht Bridging-Therapie

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Studie</th>
<th>Teilnehmer</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Zielgrößen</th>
<th>Hauptergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashoori 2012 [727]</td>
<td>Retrospektiv 36</td>
<td>TACE + RFA + LT</td>
<td>Drop-out-Rate</td>
<td>Histopath. Efficacy</td>
<td>Erniedrigte Drop-out-Rate vor LT durch LRT, hohe Rate von Tumornekrose</td>
<td></td>
</tr>
<tr>
<td>Boteon 2018 [728]</td>
<td>Retrospektiv 57</td>
<td>TACE</td>
<td>No TACE</td>
<td>Post-LT-Complications</td>
<td>Erhöhte Inzidenz von intraoperativen Komplikationen nach TACE ohne Auswirkung auf Mortality/Morbidity</td>
<td></td>
</tr>
<tr>
<td>Referenz</td>
<td>Studie</td>
<td>Teilnehmer</td>
<td>Intervention</td>
<td>Kontrolle</td>
<td>Zielgrößen</td>
<td>Hauptergebnis</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Cascales 2018</td>
<td>Retrospektiv</td>
<td>11</td>
<td>TACE (10) RFA (1)</td>
<td></td>
<td>OS</td>
<td>Akzeptables OS für HCC außerhalb Mailand-Kriterien, innerhalb “Up to seven Criteria” nach LRT</td>
</tr>
<tr>
<td>Finkenstedt 2016</td>
<td>Retrospektiv</td>
<td>174</td>
<td>TACE (121) RFA (60) HR (9)</td>
<td></td>
<td>OS, DFS</td>
<td>Neoadj. LRT mit gutem OS/DFS für HCC-Patienten BCLC intermediate stage</td>
</tr>
<tr>
<td>Gabr 2017</td>
<td>Retrospektiv</td>
<td>172</td>
<td>TACE</td>
<td>TARE</td>
<td>OS, DFS</td>
<td>Neoadj. TACE/ TARE mit vergleichbarem OS/DFS für HCC und anschließender LT</td>
</tr>
<tr>
<td>Györi 2017</td>
<td>Retrospektiv</td>
<td>150</td>
<td>Single LRT: TACE, RFA, PEI</td>
<td>Multimodal LRT</td>
<td>OS</td>
<td>Neoadj. single LRT mit bessarem OS als multimodale LRT für HCC mit LT</td>
</tr>
<tr>
<td>Jianyong 2017</td>
<td>Retrospektiv</td>
<td>1560</td>
<td>TACE + LT</td>
<td>RFA/Resection + LT</td>
<td>OS, DFS</td>
<td>Neoadj. TACE mit vergleichbarem OS/DFS für HCC im BCLC A/B</td>
</tr>
<tr>
<td>Lu 2005</td>
<td>Retrospektiv</td>
<td>52</td>
<td>RFA + LT</td>
<td></td>
<td>OS, DFS, Drop-out-Rate</td>
<td>Neoadj. RFA mit gutem OS/DFS und niedriger Drop-out-Rate für HCC pts. mit BCLC Early-Stage</td>
</tr>
<tr>
<td>Nicolini 2010</td>
<td>Retrospektiv</td>
<td>49</td>
<td>TACE</td>
<td>TAE</td>
<td>Radiologic/Pathologic Response</td>
<td>TACE mit höherer Rate an CR als TAE</td>
</tr>
<tr>
<td>Oligane 2017</td>
<td>Retrospektiv</td>
<td>2794</td>
<td>LRT + LT</td>
<td>LT</td>
<td>OS, DFS</td>
<td>Bridging LRT verbessert OS/DFS</td>
</tr>
<tr>
<td>Referenz</td>
<td>Studie</td>
<td>Teilnehmer</td>
<td>Intervention</td>
<td>Kontrolle</td>
<td>Zielgrößen</td>
<td>Hauptergebnis</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Tan 2018 [733]</td>
<td>Retrospektiv</td>
<td>65</td>
<td>TACE + LT RFA + LT</td>
<td>LT</td>
<td>OS, Drop-out-Rate</td>
<td>Neoadj. TACE/RFA ohne Verbesserung in OS und Drop-out-Rate</td>
</tr>
<tr>
<td>Werner 2019 [734]</td>
<td>Retrospektiv</td>
<td>155</td>
<td>TACE + LT</td>
<td>LT</td>
<td>OS</td>
<td>Neodj. TACE verbessert OS</td>
</tr>
<tr>
<td>Sapisochin 2017 [191]</td>
<td>Retrospektiv</td>
<td>406</td>
<td>SBRT + LT</td>
<td>TACE/RFA + LT</td>
<td>OS</td>
<td>SBRT als äquivalente Alternative zu TACE/RFA als Bridging-Therapie</td>
</tr>
</tbody>
</table>

DFS = Disease Free Survival, LRT = Lokoregionäre Therapie, LT = Lebertransplantation
Tabelle 15: Übersicht über die Literatur zum Downstaging

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Studientyp</th>
<th>Teilnehmer</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Zielgrößen</th>
<th>Hauptergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finkenstedt</td>
<td>Retrospektiv</td>
<td>174</td>
<td>TACE (121)</td>
<td>Post-LT OS</td>
<td>Downstaging mit vergleichbarem OS für HCC pts. Mit very early/early und intermediate stage CR mit significant besserem Survival als PD</td>
<td></td>
</tr>
<tr>
<td>2016 [177]</td>
<td></td>
<td></td>
<td>RFA (60)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HR (9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Györi</td>
<td>Retrospektiv</td>
<td>150</td>
<td>Single LRT: TACE, RFA, PEI</td>
<td>Post-LT: OS</td>
<td>Downstaging mit besseren OS als multimodale LRT für HCC pts. nach LT OS für TACE und RFA vergleichbar</td>
<td></td>
</tr>
<tr>
<td>2017 [178]</td>
<td></td>
<td></td>
<td>Multimodal LRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jianyong</td>
<td>Retrospektiv</td>
<td>1560</td>
<td>TACE + LT</td>
<td>OS, DFS</td>
<td>Downstaging mit TACE mit vergleichbarem OS/DFS wie RFA/Resection für HCC pts. mit BCLC A/B</td>
<td></td>
</tr>
<tr>
<td>2017 [179]</td>
<td></td>
<td></td>
<td>RFA/Resection + LT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yao</td>
<td>Retrospektiv</td>
<td>606</td>
<td>LRT + LT</td>
<td>OS, DFS</td>
<td>Downstaging in eine Kategorie T2 erzeugt vergleichbare post-LT OS/DFS zu Patienten, die bereits initial in der Kategorie T2 waren.</td>
<td></td>
</tr>
<tr>
<td>2015 [158]</td>
<td></td>
<td></td>
<td>LT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 16: Vergleichende Studien Resektion versus Ablation bei HCC < 3 cm

<table>
<thead>
<tr>
<th>Autor</th>
<th>Design</th>
<th>Patienten [n]</th>
<th>Overall Survival 1-Jahr [%]</th>
<th>Overall Survival 3-Jahre [%]</th>
<th>Overall Survival 5-Jahre [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nishikawa 2011</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>69</td>
<td>100</td>
<td>81,4</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>162</td>
<td>95,4</td>
<td>79,6</td>
</tr>
<tr>
<td>Wang 2012</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>208</td>
<td>96,1</td>
<td>87,8</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>254</td>
<td>91,6</td>
<td>73,5</td>
</tr>
<tr>
<td>Feng 2012</td>
<td>Rx</td>
<td>RCT</td>
<td>84</td>
<td>96</td>
<td>87,6</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>84</td>
<td>93,1</td>
<td>83,1</td>
</tr>
<tr>
<td>Peng 2012</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>74</td>
<td>90,5</td>
<td>70,9</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>71</td>
<td>98,5</td>
<td>87,7</td>
</tr>
<tr>
<td>Hasegawa 2013</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>5364</td>
<td></td>
<td>85,3</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>5548</td>
<td></td>
<td>81,0</td>
</tr>
<tr>
<td>Fang 2014</td>
<td>Rx</td>
<td>RCT</td>
<td>60</td>
<td></td>
<td>77,5</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>60</td>
<td></td>
<td>82,5</td>
</tr>
<tr>
<td>Miura 2015</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>871</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>871</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Zhang 2016</td>
<td>Rx</td>
<td></td>
<td>1480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autor</td>
<td>Design</td>
<td>Patienten [n]</td>
<td>Overall Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-Jahr [%]</td>
<td>3-Jahre [%]</td>
<td>5-Jahre [%]</td>
</tr>
<tr>
<td>Zhang 2017 [741]</td>
<td>Rx Mettaanalys</td>
<td>73</td>
<td>95,2</td>
<td>71,4</td>
<td>38,1</td>
</tr>
<tr>
<td></td>
<td>MWA</td>
<td></td>
<td>96,7</td>
<td>53,3</td>
<td>43,3</td>
</tr>
<tr>
<td>Liu 2016 [742]</td>
<td>Rx Retrospektiv</td>
<td>79</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takayasu 2018 [743]</td>
<td>Rx Retrospektiv</td>
<td>176</td>
<td>94</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>90</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Uhlig 2019 [269]</td>
<td>Rx Register</td>
<td>10 085</td>
<td></td>
<td>39,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>8211</td>
<td></td>
<td>37,3</td>
<td></td>
</tr>
</tbody>
</table>

Kein signifikanter Unterschied im OS zwischen der MWA Gruppe und der Resektionsgruppe.
<table>
<thead>
<tr>
<th>Autor</th>
<th>Design</th>
<th>Patienten [n]</th>
<th>Tumor D [cm]</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1J [%]</td>
</tr>
<tr>
<td>Nishikawa 2011</td>
<td>Rx</td>
<td>69</td>
<td>2,68±0,49</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>162</td>
<td>1,99±0,62</td>
<td>95,4</td>
</tr>
<tr>
<td>Hung 2011</td>
<td>Rx</td>
<td>229</td>
<td>2,88±1,06</td>
<td>97,3</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>190</td>
<td>2,37±0,92</td>
<td>96,6</td>
</tr>
<tr>
<td>Wang 2012</td>
<td>Rx</td>
<td>208</td>
<td>early stage</td>
<td>96,1</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>254</td>
<td></td>
<td>91,6</td>
</tr>
<tr>
<td>Feng 2012</td>
<td>Rx</td>
<td>84</td>
<td>2.6±0.8</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>84</td>
<td>2.4±0.6</td>
<td>93,1</td>
</tr>
<tr>
<td>Hasegawa 2013</td>
<td>Rx</td>
<td>5364</td>
<td>1-3</td>
<td>85,3</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>5548</td>
<td>< 3</td>
<td>81,0</td>
</tr>
<tr>
<td>Fang 2014</td>
<td>Rx</td>
<td>60</td>
<td>1-3</td>
<td>77,5</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>60</td>
<td>≤ 3cm</td>
<td>82,5</td>
</tr>
<tr>
<td>Miura 2015</td>
<td>Rx</td>
<td>871</td>
<td>Single</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td>871</td>
<td>< 3</td>
<td>52</td>
</tr>
<tr>
<td>Zhang 2017</td>
<td>Rx</td>
<td>73</td>
<td>small</td>
<td>95,2</td>
</tr>
<tr>
<td></td>
<td>MWA</td>
<td></td>
<td></td>
<td>96,7</td>
</tr>
<tr>
<td>Autor</td>
<td>Design</td>
<td>Patienten [n]</td>
<td>Tumor D [cm]</td>
<td>Overall Survival</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1J [%]</td>
</tr>
<tr>
<td>Ogihara 2005 [745]</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>47</td>
<td>7,4±5,2</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>40</td>
<td>4,6±2,9</td>
</tr>
<tr>
<td>Lu 2006 [746]</td>
<td>Rx</td>
<td>RCT</td>
<td>54</td>
<td>Mailand</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Lupo 2007 [747]</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>42</td>
<td>4 (3-5)</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>60</td>
<td>3,65 (3-5)</td>
</tr>
<tr>
<td>Abu-Hilal 2008 [748]</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>34</td>
<td>3,8 (1,3-5,0)</td>
</tr>
<tr>
<td></td>
<td>RFA</td>
<td></td>
<td>34</td>
<td>3 (2-5)</td>
</tr>
</tbody>
</table>
Tabelle 19: TACE plus Thermoablation bis ca. 5 cm und > 5cm bis <7cm

<table>
<thead>
<tr>
<th>Autor</th>
<th>Design</th>
<th>Patienten [n]</th>
<th>Tumor D [cm]</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tashiro 2011</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>199, 2,1±0,63</td>
<td>95,6, 90,9, 76</td>
</tr>
<tr>
<td></td>
<td>RFA + TACE</td>
<td>87 (69 TACE)</td>
<td>1,8±0,52</td>
<td>97,6, 81,4, 71</td>
</tr>
<tr>
<td>Kim 2013</td>
<td>Rx</td>
<td>Prospektiv</td>
<td>47, 3,66±0,76</td>
<td>95,7, 84,3</td>
</tr>
<tr>
<td></td>
<td>TACE + RFA</td>
<td>37, 3,46±0,75</td>
<td>97,3, 78,4</td>
<td></td>
</tr>
<tr>
<td>Tang 2016</td>
<td>RFA</td>
<td>Retrospektiv</td>
<td>49, 5,54±1,41</td>
<td>20,9</td>
</tr>
<tr>
<td></td>
<td>TACE</td>
<td></td>
<td>43, 5,78±1,35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TACE + RFA</td>
<td>40, 5,35±1,10</td>
<td></td>
<td>42,5</td>
</tr>
<tr>
<td>Liu 2016</td>
<td>Rx</td>
<td>RCT</td>
<td>100, 3 (0,6-5)</td>
<td>97,0, 83,7, 61,9</td>
</tr>
<tr>
<td></td>
<td>RFA + TACE</td>
<td>100, 2,8 (0,6-5)</td>
<td>96,0, 67,2, 45,7</td>
<td></td>
</tr>
<tr>
<td>Bholee 2017</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>782, 3±1,1</td>
<td>94,6, 75,1, 55,3</td>
</tr>
<tr>
<td></td>
<td>RFA & TACE</td>
<td>74, 2,9±1,1</td>
<td>91,2, 64,4, 47,7</td>
<td></td>
</tr>
<tr>
<td>Pan 2017</td>
<td>Rx</td>
<td>Retrospektiv</td>
<td>214, Up-to-7 Kriterien</td>
<td>96,1, 86,4, 46,2</td>
</tr>
<tr>
<td></td>
<td>TACE + RFA</td>
<td>206, ≤ 5 Herde ≤ 7 cm</td>
<td>96,1, 76,7, 41,3</td>
<td></td>
</tr>
<tr>
<td>Zhang 2018</td>
<td>TACE</td>
<td>Retrospektiv</td>
<td>100, ≤ 5 Herde ≤ 7 cm</td>
<td>77,5, 42,1, 21</td>
</tr>
<tr>
<td></td>
<td>TACE+MWA</td>
<td>50,</td>
<td>93,1, 79, 67,7</td>
<td></td>
</tr>
<tr>
<td>Autor</td>
<td>Design</td>
<td>Patienten [n]</td>
<td>Tumor D [cm]</td>
<td>Overall Survival</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Endo 2018</td>
<td>TACE Propensity Score</td>
<td>103</td>
<td>≤ 7 Herde ≤ 5 cm</td>
<td>92,7 55,7 33,3</td>
</tr>
<tr>
<td></td>
<td>TACE+RFA</td>
<td></td>
<td></td>
<td>97,4 70,4 60,4</td>
</tr>
</tbody>
</table>

TACE: Transarterielle Chemoembolisation
RFA: Radiofrequence Ablation
Tabelle 20: Prospektiv randomisierte Vergleichsstudien bei Patienten mit HCC mit Nachweis eines Überlebensvorteils durch TACE versus supportive Therapie (BSC)

<table>
<thead>
<tr>
<th></th>
<th>Llovet et al. 2002 [292]</th>
<th>Lo et al. 2002 [288]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten eingeschlossen</td>
<td>112 (12%)</td>
<td>80 (21%)</td>
</tr>
<tr>
<td>Patienten ausgeschlossen</td>
<td>791 (88%)</td>
<td>307 (79%)</td>
</tr>
<tr>
<td>Ausschlussgründe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kurative Behandlung</td>
<td>34%</td>
<td>28%</td>
</tr>
<tr>
<td>lokales Tumorstadium</td>
<td>22%</td>
<td>2%</td>
</tr>
<tr>
<td>Stadium Leberzirrhose</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Gefäßinfiltration und extrahepatische Metastasen</td>
<td>11%</td>
<td>20%</td>
</tr>
<tr>
<td>andere</td>
<td>16%</td>
<td>19%</td>
</tr>
<tr>
<td>Behandlungsarten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TACE</td>
<td>40 (Dx,L,GF)1)</td>
<td>40 (Cis,L,GF)2)</td>
</tr>
<tr>
<td>TAE</td>
<td>37 (GF)</td>
<td>-</td>
</tr>
<tr>
<td>Supportive Therapie</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Patienten- und Tumorcharakteristika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter (a)</td>
<td>61-66</td>
<td>53-69</td>
</tr>
<tr>
<td>Tumordiameter</td>
<td>4,0-5,8 cm</td>
<td>4,0-14,0 cm</td>
</tr>
<tr>
<td>medianer Tumordiameter</td>
<td>4,9 cm</td>
<td>7,0 cm</td>
</tr>
<tr>
<td>Anteil multinoduläres HCC</td>
<td>65%</td>
<td>58%</td>
</tr>
<tr>
<td>Okuda-Stadium I/II</td>
<td>68%/32%</td>
<td>48%/52%</td>
</tr>
<tr>
<td>Child-Pugh-Stadium A/B</td>
<td>78%/22%</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | S3-Leitlinie Hepatozelluläres Karzinom und biliäre Karzinome | Version 3.0 | Juli 2022
<table>
<thead>
<tr>
<th></th>
<th>Llovet et al. 2002 [292]</th>
<th>Lo et al. 2002 [288]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CR+PR nach WHO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TACE</td>
<td>35%</td>
<td>39%</td>
</tr>
<tr>
<td>TAE</td>
<td>43%</td>
<td>-</td>
</tr>
<tr>
<td>Supportive Therapie</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td>Überlebensraten 1a/2a/3a (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TACE</td>
<td>82*/63*/29*</td>
<td>57*/31*/26*</td>
</tr>
<tr>
<td>TAE</td>
<td>75/50/29</td>
<td>-</td>
</tr>
<tr>
<td>Supportive Therapie</td>
<td>63*/27*/17*</td>
<td>32*/11*/3*</td>
</tr>
<tr>
<td>Signifikanz (*)</td>
<td>p = 0,009</td>
<td>p = 0,009</td>
</tr>
<tr>
<td>Überlebenszeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TACE</td>
<td>mittlere 28,7 Mo.</td>
<td>mediane 14 Mo.**</td>
</tr>
<tr>
<td>TAE</td>
<td>25,3 Mo.</td>
<td>-</td>
</tr>
<tr>
<td>Supportive Therapie</td>
<td>17,9 Mo.</td>
<td>6 Mo.**</td>
</tr>
</tbody>
</table>

Bedeutung der Patientenselektion. TAE=Embolisation ohne i.a. Chemotherapie Dx=Doxorubicin, Lip=Lipiodol, GF=Gelfoam

1) 25-75mg Doxorubicin/m²; 10 ml Lipiodol, Gelfoam
2) 1-30 mg Cisplatin, 1-30 ml Lipiodol (1mg Cisplatin in 1ml NaCl+ 1:1 Lipiodol), Gelfoam; *Signifikanz wie angegeben, ** aus der Kaplan-Meier-Kurve abgeleitet
Tabelle 21: Vergleichsstudien konventioneller TACE und supportiver Therapie

<table>
<thead>
<tr>
<th>Autor</th>
<th>Methode</th>
<th>Pat.</th>
<th>OR (%)</th>
<th>1a-ÜR (%)</th>
<th>2a-ÜR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAE+5FU iv</td>
<td>21</td>
<td>48</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SFU iv</td>
<td>21</td>
<td>10</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Pelletier 1990 [756]</td>
<td>cTACE*</td>
<td>21</td>
<td>33</td>
<td>24</td>
<td>n.r.</td>
</tr>
<tr>
<td></td>
<td>BSC</td>
<td>21</td>
<td>0</td>
<td>33</td>
<td>n.r.</td>
</tr>
<tr>
<td>GETCH 1995 [757]</td>
<td>cTACE</td>
<td>50</td>
<td>16</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>BSC</td>
<td>46</td>
<td>5</td>
<td>43</td>
<td>26</td>
</tr>
<tr>
<td>Bruix 1998 [758]</td>
<td>TAE**</td>
<td>40</td>
<td>55</td>
<td>70</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>BSC</td>
<td>40</td>
<td>0</td>
<td>72</td>
<td>50</td>
</tr>
<tr>
<td>Pelletier 1998 [759]</td>
<td>cTACE</td>
<td>37</td>
<td>24</td>
<td>51</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen</td>
<td>36</td>
<td>6</td>
<td>55</td>
<td>26</td>
</tr>
<tr>
<td>Lo 2002 [788]</td>
<td>TACE</td>
<td>40</td>
<td>27</td>
<td>57 (p=0.002)</td>
<td>31 (p=0.002)</td>
</tr>
<tr>
<td></td>
<td>BSC</td>
<td>39</td>
<td>3</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>Llovet 2002 [792]</td>
<td>TAE</td>
<td>37</td>
<td>43</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>cTACE</td>
<td>40</td>
<td>35</td>
<td>82 (p=0.009)</td>
<td>63 (p=0.009)</td>
</tr>
<tr>
<td></td>
<td>BSC</td>
<td>35</td>
<td>0</td>
<td>63</td>
<td>27</td>
</tr>
<tr>
<td>Stefanini 1995 [760]</td>
<td>cTACE</td>
<td>69</td>
<td>n.r.</td>
<td>73</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>TAC</td>
<td>31</td>
<td>n.r.</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>Autor</td>
<td>Methode</td>
<td>Pat.</td>
<td>OR (%)</td>
<td>1a-ÜR (%)</td>
<td>2a-ÜR (%)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Bronowicki 1994</td>
<td>cTACE</td>
<td>127</td>
<td>n.r.</td>
<td>64 p<0,00001</td>
<td>38 p<0,00001</td>
</tr>
<tr>
<td></td>
<td>BSC</td>
<td>127</td>
<td>n.r.</td>
<td>18</td>
<td>6</td>
</tr>
</tbody>
</table>

(1-7 RCT’s, 8 und 9 matched pair Analysen). cTACE=konventionelle TACE, TAE=transarterielle Embolisation, TAC=transarterielle Chemotherapie, BSC= best supportive care, OR=objective response (CR+PR) nach WHO, 1a/2a-ÜR= 1-/2-Jahres-Überlebensraten. * = Verwendung von Gelfoam-Puder, ** = Verwendung von Gelfoam und Coils
<table>
<thead>
<tr>
<th>Autor</th>
<th>Lokalisation</th>
<th>Pat.</th>
<th>mGÜ (Mo)</th>
<th>30d-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim 2009 [762]</td>
<td>lobäre und segmentale Venen</td>
<td>202</td>
<td>5-10*</td>
<td>0,5%</td>
</tr>
<tr>
<td>Chung 2011 [764]</td>
<td>Vena portae</td>
<td>83</td>
<td>3-7*</td>
<td>n.a.</td>
</tr>
<tr>
<td>Georgiades 2005 [765]</td>
<td>Vena portae und lobäre Venen</td>
<td>32</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>Okazaki 1991 [766]</td>
<td>Vena portae lobäre Venen segmentale Venen</td>
<td>59</td>
<td>3,8</td>
<td>5,6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td>4,0</td>
<td>8,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>4,3</td>
<td>6,5%</td>
</tr>
</tbody>
</table>

mGÜ= mittleres Gesamtüberleben, 30d-M=30-Tages-Mortalität, n.a.=nicht angegeben
Tabellenangabe

Tabelle 23: Ergebnisse prospektiv randomisierter Vergleichsstudien konventioneller TACE und DE TACE bei HCC.

<table>
<thead>
<tr>
<th>Autor</th>
<th>TACE</th>
<th>Pat.</th>
<th>Child-Pugh A/B/C (%)</th>
<th>Überlebensdaten</th>
<th>OR (%)</th>
<th>NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lammer 2010</td>
<td>cTACE</td>
<td>93</td>
<td>82/18/0</td>
<td>n.a.</td>
<td>44*</td>
<td>PES 26%</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>108</td>
<td>83/17/0</td>
<td>n.a.</td>
<td>52*</td>
<td>SAE 30%</td>
</tr>
<tr>
<td>Sacco 2011</td>
<td>cTACE</td>
<td>34</td>
<td>74/26/0</td>
<td>2a ÜR 84%</td>
<td>100**</td>
<td>PES 56%</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>33</td>
<td>88/12/0</td>
<td>2a ÜR 87%</td>
<td>100**</td>
<td>PES 64%</td>
</tr>
<tr>
<td>Malenstein 2011</td>
<td>cTACE</td>
<td>14</td>
<td>100/0/0</td>
<td>n.a.</td>
<td>0**</td>
<td>PES 100%</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>16</td>
<td>88/12/0</td>
<td>n.a.</td>
<td>0**</td>
<td>PES 75%</td>
</tr>
<tr>
<td>Golfieri 2014</td>
<td>cTACE</td>
<td>88</td>
<td>88/12/0</td>
<td>mÜL 28 Mo</td>
<td>52**</td>
<td>PES (Schmerz)</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>89</td>
<td>84/16/0</td>
<td>mÜL 29 Mo</td>
<td>55**</td>
<td>72%</td>
</tr>
</tbody>
</table>

*mf=Anteil multifokaler Tumoren, TD=Tumordiameter, OR=objective response (=CR+PR);
*Dx=Doxorubicin, Lip=Lipiodol, PVA=Polyvenylalkohol-Partikel, GF=Gelfoam, PES=Postembolisationssyndrom, SAE=serious adverse event, ÜR=Überlebensrate, mÜL= mediane Überlebenszeit, SAP=super absorbable particles, Ep=Epirubicin

* OR nach EASL, ** OR nach mRECIST, *** Angabe MW der Summendiameter
Tabelle 24: Ergebnisse retrospektiver Vergleichsstudien konventionelle TACE und DEB-TACE bei HCC.

<table>
<thead>
<tr>
<th>Autor</th>
<th>TACE</th>
<th>Pat.</th>
<th>Methode</th>
<th>Child A/B/C (%)</th>
<th>OR (%)</th>
<th>NW</th>
<th>Mediane Überlebenszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhanasekaran 2010</td>
<td>cTACE</td>
<td>26</td>
<td>Dx,Cis,MMC,Lip,PVA</td>
<td>42/42/15</td>
<td>49/24/27</td>
<td>n.a.</td>
<td>keine Unterschied</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>45</td>
<td>300-700 um</td>
<td></td>
<td></td>
<td>n.a.</td>
<td>403d</td>
</tr>
<tr>
<td>Puchol 2011</td>
<td>cTACE</td>
<td>25</td>
<td>Dx,Lip,PVA</td>
<td>88/12/0</td>
<td>44*</td>
<td>36% Schmerz</td>
<td>709d</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>47</td>
<td>100-500 um</td>
<td></td>
<td>55*</td>
<td>8% Schmerz</td>
<td>672d</td>
</tr>
<tr>
<td>Wiggermann 2011</td>
<td>cTACE</td>
<td>22</td>
<td>Cis,Lip,PVA</td>
<td>100/0/0</td>
<td>23*</td>
<td>PES 16% mK</td>
<td>414d</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>22</td>
<td>300-500 um</td>
<td></td>
<td>23*</td>
<td>PES 22% mK</td>
<td>651d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36% Schmerz</td>
<td></td>
</tr>
<tr>
<td>Song 2012</td>
<td>cTACE</td>
<td>69</td>
<td>Dx,Cis,Lip,GF,PVA</td>
<td>90/10/0</td>
<td>49**</td>
<td>PES 21%</td>
<td>25 Mo</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>60</td>
<td>100-500 um</td>
<td></td>
<td>82**</td>
<td>PES 22%</td>
<td>32 Mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.01</td>
<td></td>
</tr>
<tr>
<td>Vericat 2015</td>
<td>cTACE</td>
<td>30</td>
<td>Cis,Lip</td>
<td>63/37/0</td>
<td>23*</td>
<td>PES 87% Tox. 54%</td>
<td>30 Mo</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>30</td>
<td>100-500 um</td>
<td></td>
<td>37%</td>
<td>PES 37% Tox. 31%</td>
<td>31 Mo</td>
</tr>
<tr>
<td>Kloeckner 2015</td>
<td>cTACE</td>
<td>174</td>
<td>MMC,Lip</td>
<td>59/37/4</td>
<td>23*</td>
<td>n.a.</td>
<td>409d</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>76</td>
<td>100-500 um</td>
<td></td>
<td>37/4</td>
<td>n.a.</td>
<td>369d</td>
</tr>
<tr>
<td>Facciorussso 2016</td>
<td>cTACE</td>
<td>104</td>
<td>Dx,Lip,GF-Puder</td>
<td>89/11/0</td>
<td>85**</td>
<td>Hep. Tox. 7%</td>
<td>39 Mo</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>145</td>
<td>100-300</td>
<td></td>
<td>75**</td>
<td>Hep. Tox. 12%</td>
<td>32 Mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.04</td>
<td>p=0.02</td>
<td></td>
</tr>
<tr>
<td>Baur 2016</td>
<td>cTACE</td>
<td>18</td>
<td>Dx,Lip,PVA</td>
<td>59/30/11</td>
<td>31%</td>
<td>PES 31% (Schmerz)</td>
<td>11 Mo</td>
</tr>
<tr>
<td></td>
<td>DE-TACE</td>
<td>14</td>
<td>300-500</td>
<td></td>
<td>79/21/0</td>
<td>PES 71% (Schmerz)</td>
<td>9 Mo</td>
</tr>
</tbody>
</table>

* OR nach EASL, ** OR nach mRECIST, Tox=Toxizität Grad 2-4, mK= major Komplikationen
Dx=Doxorubicin, Cis=Cisplatin, MMC=Mitomycin C, Lip=Lipiodol, PVA=Polyvenylalkohol-Partikel, GF=Gelfoam
Tabelle 25: Metaanalysen zum Vergleich konventioneller TACE und DE TACE bei HCC.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Studien (RCTs)</th>
<th>Pat. (n)</th>
<th>CR+PR</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gao 2013 [777]</td>
<td>7 (3)</td>
<td>693</td>
<td>1,4</td>
<td>n.a.</td>
</tr>
<tr>
<td>Huang 2014 [778]</td>
<td>7 (2)</td>
<td>700</td>
<td>1,9</td>
<td>0,7 (3a)</td>
</tr>
<tr>
<td>Zhou X 2014 [779]*</td>
<td>9 (5)</td>
<td>830</td>
<td>1,4</td>
<td>0,7</td>
</tr>
<tr>
<td>Zou JH 2016 [780]*</td>
<td>9 (3)</td>
<td>866</td>
<td>1,2</td>
<td>0,6</td>
</tr>
<tr>
<td>Facciorusso 2016 [781]*</td>
<td>12 (4)</td>
<td>1449</td>
<td>1,2</td>
<td>0,6 (3a)</td>
</tr>
</tbody>
</table>

Angabe der Odds Ratios für Gesamtüberleben zugunsten der DE TACE. Subanalysen der Daten von RCT`s zeigten keine Unterschiede (*).
Tabelle 26: Literaturübersicht zur TARE

<table>
<thead>
<tr>
<th>Autor</th>
<th>Studien Design</th>
<th>Anzahl Pat. (n)</th>
<th>Patienten mit PVT n (%)</th>
<th>Median Time to Progression*</th>
<th>Median Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Monate</td>
<td>95% CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salem 2010</td>
<td>Prospektiv</td>
<td>291</td>
<td>Child Pugh A: 12</td>
<td>5,6</td>
<td>2,3-7,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Child Pugh B: 20</td>
<td>5,9</td>
<td>4,2-7,9</td>
</tr>
<tr>
<td>Mazzaferro 2013</td>
<td>Prospektiv</td>
<td>52</td>
<td>Child Pugh A: 54</td>
<td>6</td>
<td>6-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Child Pugh B: 13</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Hilgard 2010</td>
<td>Prospektiv</td>
<td>108</td>
<td>31</td>
<td>8,0</td>
<td>5,9-NC</td>
</tr>
<tr>
<td>Kulik 2008</td>
<td>Prospektiv</td>
<td>108</td>
<td>No PVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

*In patients for whom radiological response data was available; + no extrahepatic metastases patients; CI=confidence interval; CP=Child-Pugh; n=number; NC=not calculable or infinity; PVT=portal vein thrombosis
Kapitel 4.4. Operative und Interventionelle Therapie der biliären Karzinome

Tabelle 27: Übersicht über Literatur zur präoperativen biliären Drainage (PBD)

<table>
<thead>
<tr>
<th>Autor</th>
<th>Design</th>
<th>Methode</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coelen 2018 [626]</td>
<td>Randomisiert, multizentrisch</td>
<td>ERCP vs. PTCD für die voraussichtlich verbleibende Leberseite bei geplanter Hemihepatektomie</td>
<td>Höhere Mortalität in der PTBD Gruppe (41% von 27 Patienten) als in endoskopischer BD Gruppe (11% von 27 Patienten) mit einem relativen Risiko von 3,7 (p=0,03).</td>
</tr>
<tr>
<td>Celotti 2017 [782]</td>
<td>Metaanalyse</td>
<td>PBD vs. keine PBD</td>
<td>Gleiche Mortalität, erhöhte Morbidität bei PBD</td>
</tr>
<tr>
<td>Ba 2020 [627]</td>
<td>Retrospektiv</td>
<td>PTCD vs ERCP</td>
<td>ERCP-Gruppe hatte im Vergleich zur PTBD-Gruppe eine höhere Inzidenz einer postprozeduralen Cholangitis (37 [37,37 %] vs. 18 [22,22 %], p = 0,028) und Pankreatitis (17 [17,17 %] vs. 2 [2,47 %], P = 0,001); diese Gruppe benötigte häufiger eine salvaged biliary drainage (18 [18,18 %] vs. 5 [6,17 %], P = 0,029), und erzeugten höhere Kosten (P < 0,05)</td>
</tr>
<tr>
<td>Ramanathan 2018 [783]</td>
<td>Retrospektiv</td>
<td>ERCP</td>
<td>Mehr postoperative Komplikationen bei PBD</td>
</tr>
<tr>
<td>Cai 2017 [784]</td>
<td>Retrospektiv, single-center</td>
<td>ERCP</td>
<td>PBD empfohlen, falls Bilirubin > 12.4 mg/dL</td>
</tr>
<tr>
<td>Farges 2013 [785]</td>
<td>Retrospektiv, multi-center</td>
<td>ERCP</td>
<td>Erniedrigte postoperative Mortalität im Falle einer PBD, falls Hemihepatektomie rechts erfolgt ist</td>
</tr>
<tr>
<td>Autor</td>
<td>Design</td>
<td>Methode</td>
<td>Ergebnis</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Xiong 2013</td>
<td>Retrospektiv, single-center</td>
<td>‚seeding metastasis‘: ERCP vs. PTCD</td>
<td>ERCP besser als PTCD in Bezug auf Metastasenaussaat bei (10,5% vs. 22,0%, OR=0,35, 95% CI: 0,23; 0,53)</td>
</tr>
<tr>
<td>Wang 2019</td>
<td>Retrospektiv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wronka 2019</td>
<td>Retrospektiv, single-center</td>
<td>PBD vs. keine PBD</td>
<td>Erhöhte postop. Mortalität bei Bili > 6,2; erhöhte Morbidität bei Bili > 2,5 mg/dl</td>
</tr>
<tr>
<td>Kishi 2016</td>
<td>Retrospektiv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakai 2018</td>
<td>Retrospektiv</td>
<td>Nasobiliäre Sonde vs. Plastikstent transpapillar</td>
<td>Vergleichbar</td>
</tr>
<tr>
<td>Komaya 2017</td>
<td>Retrospektiv</td>
<td>PTCD vs. endoskopische Drainage</td>
<td>Das OS ist bei der PTBD signifikant niedriger als in der endoskopischen Drainage-Gruppe (37,0% vs 44,3% at 5 years, p = 0,019). Die PTBD stellte einen Risikofaktor für Stichkanalmetastasen (p = 0,005).</td>
</tr>
<tr>
<td>Kim 2015</td>
<td>Retrospektiv</td>
<td>PTCD vs. endoskopische Drainage</td>
<td>Höhere Morbidität nach PTCD; In 2 von 62 Fällen Tumorzellverschleppung (seeding metastasis) nach PTCD.</td>
</tr>
</tbody>
</table>

PTBD = perkutane transhepatische biliäre Drainage, PBD = (präoperative) biliäre Drainage
Tabelle 28: Übersicht über Literatur zur biliären Drainage (BD) bei Cholangiokarzinom.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Design</th>
<th>Methode</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham 2002 [635]</td>
<td>Retrospektiv</td>
<td></td>
<td>'Quality of Life' bei Hyperbilirubinämie schlechter und durch erfolgreiche Drainage zu verbessern</td>
</tr>
<tr>
<td>Paik 2009 [636]</td>
<td>Retrospektiv</td>
<td>PTCD vs. ERCP</td>
<td>Überleben nach erfolgreicher Drainage besser als keine Drainage</td>
</tr>
<tr>
<td>Speer 1987 [642]</td>
<td>RCT</td>
<td>Palliative Drainage, PTCD vs. ERCP</td>
<td>PLASTIK UNI-lateral Ikterus behob 81% 61% p=0,017 30-d Mortalität 15% 33%p=0,016</td>
</tr>
<tr>
<td>De Palma 2001 [652]</td>
<td>RCT</td>
<td>Uni- vs. bi-lateral</td>
<td>• Unilateral kann genügen!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Hinweis auf Cholangitis durch Intervention</td>
</tr>
<tr>
<td>Saluja 2008 [637]</td>
<td>RCT</td>
<td>PTCD vs. ERCP bei hilär einwachsendem Gallenblasenkarzinom</td>
<td>• PTCD erfolgreicher,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PTCD mit weniger Cholangitis</td>
</tr>
<tr>
<td>Sangchan 2012 [789]</td>
<td>RCT</td>
<td>SEMS vs. PLASTIK</td>
<td>• SEMS bessere primäre Drainage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Aber: Plastik: 66% 7Fr</td>
</tr>
<tr>
<td>Cheng 2002 [655]</td>
<td>Retrospektiv</td>
<td>SEMS vs. Plastik vs. PTCD</td>
<td>SEMS, Bihilär, 69% ohne erneute Intervention</td>
</tr>
<tr>
<td>Lee 2019 [644]</td>
<td>RANDOMISIERTE STUDIE</td>
<td>Malignant hilar stricture: side-by-side vs. stent in stent SEMS</td>
<td>Similar Efficacy</td>
</tr>
<tr>
<td>Autor</td>
<td>Design</td>
<td>Methode</td>
<td>Ergebnis</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Uberoi 2012</td>
<td>Retrospektiv</td>
<td>Registerstudie Großbritannien</td>
<td>Krankenhausmortalität 19,8% bei maligner Stenose</td>
</tr>
<tr>
<td>Paik 2018</td>
<td>RCT</td>
<td>EUS vs. ERCP bei distalem biliären Verschluss</td>
<td>Ebenbürtig</td>
</tr>
<tr>
<td>Bang 2018</td>
<td>RCT</td>
<td>EUS vs. ERCP bei distalem biliären Verschluss</td>
<td>Ebenbürtig</td>
</tr>
<tr>
<td>Autor</td>
<td>Design</td>
<td>Methode</td>
<td>Ergebnis</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Ortner 2003 [661]</td>
<td>Randomisiert</td>
<td>PDT+ Stent vs Stent</td>
<td>Überlebensvorteil PDT</td>
</tr>
<tr>
<td>Zoepf 2001 [660]</td>
<td>Kohortenstudie</td>
<td>PDT mit 5-ALA</td>
<td>nicht effektiv</td>
</tr>
<tr>
<td>Zoepf 2005 [662]</td>
<td>Randomisiert</td>
<td>PDT+ Stent vs. Stent</td>
<td>Überlebensvorteil PDT</td>
</tr>
<tr>
<td>Pereira 2018 [663]</td>
<td>Randomisiert</td>
<td>PDT+ Stent vs. Stent</td>
<td>Schlechteres Outcome bei Patienten mit lokal fortgeschrittenen und metastasierten perihilären Tumoren</td>
</tr>
<tr>
<td>Kahaleh 2008 [668]</td>
<td>Retrospektiv</td>
<td>PDT+ Stent vs. Stent</td>
<td>Überlebensvorteil PDT</td>
</tr>
<tr>
<td>Gonzalez-Carmona 2019 [664]</td>
<td>Retrospektiv</td>
<td>PDT + Ctx + Stent vs. Ctx + Stent</td>
<td>Überlebensvorteil PDT</td>
</tr>
<tr>
<td>Strand 2014 [666]</td>
<td>Retrospektiv</td>
<td>PDT vs. RFA</td>
<td>Überleben nach ERCP-geführter RFA und PDT ergab keinen signifikanten Unterschied bei Patienten mit einem irresektablen CCA.</td>
</tr>
<tr>
<td>Yang 2018 [294]</td>
<td>Randomisiert</td>
<td>RFA + stent vs. stent / Bismuth 1+2 perihiläres CCA</td>
<td>Überlebensvorteil RFA</td>
</tr>
<tr>
<td>Wentrup 2016 [665]</td>
<td>Retrospektiv</td>
<td>PDT+CTx vs. PDT alone</td>
<td>1-Jahres-Überlebensrate war signifikant höher in der PDT-CT-Gruppe verglichen mit der PDT-alone-Gruppe (88% vs 58%, p=0,001).</td>
</tr>
<tr>
<td>Dolak 2017 [667]</td>
<td>Retrospektiv</td>
<td>PDT</td>
<td>PDT mit Polyhematoporphyrin war durchführbar und sicher</td>
</tr>
</tbody>
</table>
Übersicht der Änderungen zur Version 2

<table>
<thead>
<tr>
<th>Version 2.0</th>
<th>Version 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.81. Für einzelne Immuntherapienaive HCC-Patienten mit erhaltener Leberfunktion (im Stadium Child-Pugh A), mit Fernmetastasen oder einer Tumorlokalisaton, die lokoregionär nicht kontrolliert oder reseziert werden kann und für die keine zugelassene Therapie mehr zur Verfügung steht, kann entweder eine Immun-Monotherapie mit den anti-PD-1-Antikörpern Nivolumab oder Pembrolizumab oder eine Kombinationstherapie mit Nivolumab und dem CTLA-4 Antikörper Ipilimumab angeboten werden.</td>
<td>3.85. Einzelnen Immuntherapienaiven HCC-Patienten mit erhaltener Leberfunktion (im Stadium Child-Pugh A), mit Fernmetastasen oder einer Tumorlokalisaton, die lokoregionär nicht kontrolliert oder reseziert werden kann und für die keine zugelassene Therapie mehr zur Verfügung steht, kann eine Immuntherapie angeboten werden.</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | S3-Leitlinie Hepatozelluläres Karzinom und biliäre Karzinome | Version 3.0 | Juli 2022
Fusion oder ein FGFR2-Rearrangement aufweisen und die nach mindestens einer Systemtherapie progredient sind, soll eine Therapie mit dem FGFR-Inhibitor Pemigatinib angeboten werden.

4.44. Als medikamentöse Zweitlinientherapie kann eine Therapie mit FOLFOX angeboten werden.

4.47. Als medikamentöse Zweitlinientherapie kann bei Patienten mit ECOG 0-1 eine Therapie mit FOLFOX angeboten werden.

7 Abbildungsverzeichnis

Abbildung 1: Diagnostikalgorithmus HCC ... 46
Abbildung 2: Therapiealgorithmus HCC in Zirrhose .. 80
Abbildung 3: Therapiealgorithmus des HCC in Zirrhose im Stadium A1 und A2 81
Abbildung 4: Sequenztherapie beim HCC innerhalb der zugelassenen Indikationen 89
Abbildung 5: Diagnosealgorithmus eines Patienten mit einem Verdacht auf ein Cholangiokarzinom ... 117
8 Tabellenverzeichnis

Tabelle 1: Beteiligte Fachgesellschaften und Organisationen ... 10
Tabelle 2: Arbeitsgruppen und deren Mitglieder ... 13
Tabelle 3: Abkürzungsverzeichnis ... 15
Tabelle 4: Schema der Evidenzgraduierung nach Oxford (Version 2011) .. 21
Tabelle 5: Schema der Empfehlungsgraduierung ... 23
Tabelle 6: Konsensstärke .. 23
Tabelle 7: HCC-Risikobewertung bei HCV, HBV, NASH und NAFLD ... 31
Tabelle 8: Übersicht der gängigsten Selektionskriterien zur Lebertransplantation 52
Tabelle 9: Definitionen ... 53
Tabelle 10: Typische Merkmale der CCA-Subtypen ... 107
Tabelle 11: Molekulare Alterationen beim small duct iCCA .. 111
Tabelle 12: Mayo-Kriterien .. 126
Tabelle 13: Qualitätsindikatoren ... 142
Tabelle 14: Literaturübersicht Bridging-Therapie .. 145
Tabelle 15: Übersicht über die Literatur zum Downstaging .. 148
Tabelle 16: Vergleichende Studien Resektion versus Ablation bei HCC < 3 cm 149
Tabelle 17: Vergleichsstudien Thermoablation versus Resektion für bis zu drei HCC-Herde mit maximal 3cm ... 151
Tabelle 18: HCC ≤ 5 cm: Vergleich Resektion vs. Thermoablation ... 152
Tabelle 19: TACE plus Thermoablation bis ca. 5 cm und > 5 cm bis <7 cm 153
Tabelle 20: Prospektiv randomisierte Vergleichsstudien bei Patienten mit HCC mit Nachweis eines Überlebensvorteils durch TACE versus supportive Therapie (BSC) ... 155
Tabelle 21: Vergleichsstudien konventioneller TACE und supportiver Therapie 157
Tabelle 22: Ergebnisse konventioneller TACE bei HCC mit Infiltration portaler Venen definierter Ebenen ... 159
Tabelle 23: Ergebnisse prospektiv randomisierter Vergleichsstudien konventioneller TACE und DE TACE bei HCC. .. 160
Tabelle 24: Ergebnisse retrospektiver Vergleichsstudien konventionelle TACE und DEB-TACE bei HCC .. 161
Tabelle 25: Metaanalysen zum Vergleich konventioneller TACE und DE TACE bei HCC 162
Tabelle 26: Literaturübersicht zur TARE ... 163
Tabelle 27: Übersicht über Literatur zur präoperativen biliären Drainage (PBD) 164
Tabelle 28: Übersicht über Literatur zur biliären Drainage (BD) bei Cholangiokarzinom 166
Tabelle 29: Übersicht über Literatur zu intradukalen, lokalablativen Verfahren (PBD). 168
Tabelle 30: Änderungen gegenüber der Version 2.0 .. 169
9 Literaturverzeichnis

9 Literaturverzeichnis

9 Literaturverzeichnis

718. Lavingia, V., Fakhri, M., Impressive response to dual BRAF and MEK inhibition in patients with BRAF mutant intrahepatic cholangiocarcinoma-2 case reports and a brief review. J Gastrointest

